Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2789 N1124 #150 Jan 05 2025 19:51:32
%S 1,3,9,22,51,111,233,474,942,1836,3522,6666,12473,23109,42447,77378,
%T 140109,252177,451441,804228,1426380,2519640,4434420,7777860,13599505,
%U 23709783,41225349,71501422,123723351,213619683,368080793,633011454,1086665562,1862264196
%N Convolved Fibonacci numbers.
%C a(n-2) = (((-i)^(n-2))/2)*(d^2/dx^2)S(n,x)|_{x=i}, n>=2. Second derivative of Chebyshev S-polynomials evaluated at x=i (imaginary unit) multiplied by ((-i)^(n-2))/2. See A049310 for the S-polynomials. - _Wolfdieter Lang_, Apr 04 2007
%C a(n) = number of weak compositions of n in which exactly 2 parts are 0 and all other parts are either 1 or 2. - _Milan Janjic_, Jun 28 2010
%C Number of 4-cycles in the Fibonacci cube Gamma[n+3] (see the Klavzar reference, p. 511). - _Emeric Deutsch_, Apr 17 2014
%D T. Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001, p. 375.
%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A001628/b001628.txt">Table of n, a(n) for n = 0..4500</a> (terms 0..500 from T. D. Noe)
%H Daniel Birmajer, Juan Gil, and Michael D. Weiner, <a href="http://arxiv.org/abs/1405.7727">Linear recurrence sequences and their convolutions via Bell polynomials</a>, arXiv:1405.7727 [math.CO], 2014.
%H Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Gil/gil3.html">Linear Recurrence Sequences and Their Convolutions via Bell Polynomials</a>, Journal of Integer Sequences, 18 (2015), #15.1.2.
%H Peter J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H Verner E. Hoggatt, Jr., <a href="/A001628/a001628.pdf">Letters to N. J. A. Sloane, 1974-1975</a>
%H Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/15-2/hoggatt1.pdf">Fibonacci convolution sequences</a>, Fib. Quart., 15 (1977), 117-122.
%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Janjic/janjic33.html">Hessenberg Matrices and Integer Sequences </a>, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
%H Sandi Klavžar, <a href="http://www.fmf.uni-lj.si/~klavzar/preprints/FibonacciCubesRevised.pdf">Structure of Fibonacci cubes: a survey</a>, preprint.
%H Sandi Klavžar, <a href="https://doi.org/10.1007/s10878-011-9433-z">Structure of Fibonacci cubes: a survey</a>, J. Comb. Optim., 25, 2013, 505-522
%H Toufik Mansour, <a href="http://arXiv.org/abs/math.CO/0301157">Generalization of some identities involving the Fibonacci numbers</a>, arXiv:math/0301157 [math.CO], 2003.
%H Pieter Moree, <a href="http://arXiv.org/abs/math.CO/0311205">Convoluted convolved Fibonacci numbers</a>, arXiv:math/0311205 [math.CO], 2003.
%H Pieter Moree, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Moree/moree12.htm">Convoluted Convolved Fibonacci Numbers</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H Mihai Prunescu and Lorenzo Sauras-Altuzarra, <a href="https://arxiv.org/abs/2405.04083">On the representation of C-recursive integer sequences by arithmetic terms</a>, arXiv:2405.04083 [math.LO], 2024. See p. 18.
%H Jeffrey B. Remmel and J. L. B. Tiefenbruck, <a href="https://ajc.maths.uq.edu.au/pdf/64/ajc_v64_p166.pdf">Q-analogues of convolutions of Fibonacci numbers</a>, Australasian Journal of Combinatorics, Volume 64(1) (2016), Pages 166-193.
%H John Riordan, <a href="/A000262/a000262_1.pdf">Letter to N. J. A. Sloane, Oct. 1970</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciCubeGraph.html">Fibonacci Cube Graph</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,0,3,1).
%F G.f.: 1 / (1 - x - x^2)^3.
%F a(n) = A037027(n+2,2) (Fibonacci convolution triangle).
%F a(n) = ((5*n+16)*(n+1)*F(n+2)+(5*n+17)*(n+2)*F(n+1))/50, F=A000045. - _Wolfdieter Lang_, Apr 12 2000 (This formula coincides with eq. (32.14) of the Koshy reference, p. 375, if there n -> n+3. - _Wolfdieter Lang_, Aug 03 2012)
%F For n>2, a(n-2) = sum(i+j+k=n, F(i)*F(j)*F(k)). - _Benoit Cloitre_, Nov 01 2002
%F a(n) = F''(n+2, 1)/2, i.e. 1/2 times the 2nd derivative of the (n+2)th Fibonacci polynomial evaluated at 1. - _T. D. Noe_, Jan 18 2006
%F a(n) = Sum_{k=0..n} C(k,n-k)*C(k+2,2). - _Paul Barry_, Apr 13 2008
%F 0 = n*a(n) - (n+2)*a(n-1) - (n+4)*a(n-2), n>1. - _Michael D. Weiner_, Nov 18 2014
%F a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6). - _Eric W. Weisstein_, Sep 05 2017
%e G.f. = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 111*x^5 + 233*x^6 + 474*x^7 + ...
%p A001628:=-1/(z**2+z-1)**3; [_Simon Plouffe_ in his 1992 dissertation.]
%p a:= n-> (Matrix(6, (i, j)-> `if` (i=j-1, 1, `if` (j=1, [3, 0, -5, 0, 3, 1][i], 0)))^n)[1,1]: seq (a(n), n=0..29); # _Alois P. Heinz_, Aug 01 2008
%t CoefficientList[Series[1/(-z^2 - z + 1)^3, {z, 0, 100}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jul 01 2011 *)
%t (* Start _Eric W. Weisstein_, Sep 05 2017 *)
%t Table[Derivative[2][Fibonacci[n + 2, #] &][1]/2, {n, 20}]
%t Derivative[2][Fibonacci[Range[20] + 2, #] &][1]/2
%t LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 3, 9, 22, 51, 111}, 20]
%t Table[-I^(n + 1) Derivative[2][ChebyshevU[n + 1, -#/2] &][I]/2, {n, 20}]
%t (* End *)
%o (PARI) Vec((1 - x - x^2 )^-3+O(x^99)) \\ _Charles R Greathouse IV_, Jul 01 2011
%o (Magma) [(&+[Binomial(k,n-k)*Binomial(k+2,2): k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Jan 10 2018
%Y a(n) = A037027(n+2,2) (Fibonacci convolution triangle).
%Y Cf. A055243 (first differences).
%Y Cf. A291915 (6-cycles).
%K nonn,easy,changed
%O 0,2
%A _N. J. A. Sloane_, _Simon Plouffe_