login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n + n^3.
12

%I #23 Jun 09 2023 07:49:01

%S 1,4,17,54,145,368,945,2530,7073,20412,60049,178478,533169,1596520,

%T 4785713,14352282,43050817,129145076,387426321,1162268326,3486792401,

%U 10460362464,31381070257,94143190994,282429550305,847288625068

%N a(n) = 3^n + n^3.

%C In this sequence if we do a forward difference, then the 4th forward difference when considered as a sequence will be a geometric progression with common ratio 3. - Gopalakrishnan (gopala498(AT)yahoo.co.in), May 26 2010

%H Vincenzo Librandi, <a href="/A001585/b001585.txt">Table of n, a(n) for n = 0..1000</a>

%H R. K. Hoeflin, <a href="http://www.eskimo.com/~miyaguch/titan.html">Titan Test</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7, -18, 22, -13, 3).

%F G.f.: (-1+2*x^4+15*x^3-7*x^2+3*x)/((3*x-1)*(x-1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

%p seq(seq(k^n+n^k, k=3..3), n=0..23); # _Zerinvary Lajos_, Jun 29 2007

%t Table[3^n+n^3,{n,0,3*4!}] (* _Vladimir Joseph Stephan Orlovsky_, May 07 2010 *)

%o (Magma) [3^n+n^3: n in [0..30]]; // _Vincenzo Librandi_, Oct 27 2011

%Y Cf. A001580.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Vladimir Joseph Stephan Orlovsky_, May 07 2010