login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^2 is centered hexagonal.
(Formerly M4915 N2108)
48

%I M4915 N2108 #147 Sep 18 2024 12:46:12

%S 1,13,181,2521,35113,489061,6811741,94875313,1321442641,18405321661,

%T 256353060613,3570537526921,49731172316281,692665874901013,

%U 9647591076297901,134373609193269601,1871582937629476513,26067787517619401581,363077442309042145621

%N Numbers k such that k^2 is centered hexagonal.

%C Chebyshev T-sequence with Diophantine property. - _Wolfdieter Lang_, Nov 29 2002

%C a(n) = L(n,14), where L is defined as in A108299; see also A028230 for L(n,-14). - _Reinhard Zumkeller_, Jun 01 2005

%C Numbers x satisfying x^2 + y^3 = (y+1)^3. Corresponding y given by A001921(n)={A028230(n)-1}/2. - _Lekraj Beedassy_, Jul 21 2006

%C Mod[ a(n), 12 ] = 1. (a(n) - 1)/12 = A076139(n) = Triangular numbers that are one-third of another triangular number. (a(n) - 1)/4 = A076140(n) = Triangular numbers T(k) that are three times another triangular number. - _Alexander Adamchuk_, Apr 06 2007

%C Also numbers n such that RootMeanSquare(1,3,...,2*n-1) is an integer. - _Ctibor O. Zizka_, Sep 04 2008

%C a(n), with n>1, is the length of the cevian of equilateral triangle whose side length is the term b(n) of the sequence A028230. This cevian divides the side (2*x+1) of the triangle in two integer segments x and x+1. - _Giacomo Fecondo_, Oct 09 2010

%C For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(12)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - _John M. Campbell_, Jul 08 2011

%C Beal's conjecture would imply that set intersection of this sequence with the perfect powers (A001597) equals {1}. In other words, existence of a nontrivial perfect power in this sequence would disprove Beal's conjecture. - _Max Alekseyev_, Mar 15 2015

%C Numbers n such that there exists positive x with x^2 + x + 1 = 3n^2. - _Jeffrey Shallit_, Dec 11 2017

%C Given by the denominators of the continued fractions [1,(1,2)^i,3,(1,2)^{i-1},1]. - _Jeffrey Shallit_, Dec 11 2017

%C A near-isosceles integer-sided triangle with an angle of 2*Pi/3 is a triangle whose sides (a, a+1, c) satisfy Diophantine equation (a+1)^3 - a^3 = c^2. For n >= 2, the largest side c is given by a(n) while smallest and middle sides (a, a+1) = (A001921(n-1), A001922(n-1)) (see Julia link). - _Bernard Schott_, Nov 20 2022

%D E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - _N. J. A. Sloane_, Mar 03 2022

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A001570/b001570.txt">Table of n, a(n) for n = 1..870</a> (terms 1..101 from T. D. Noe)

%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.

%H G. Julia, <a href="https://gjmaths.pagesperso-orange.fr/contenu/trcvenon.pdf">Triangles dont un angle mesure 120 degrés</a>, Problème Capes, part C (in French).

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.

%H Sociedad Magic Penny Patagonia, <a href="http://www.magicpenny.org/engteorema.htm">Leonardo en Patagonia</a>

%H V. Thebault, <a href="http://www.jstor.org/stable/2305033">Consecutive cubes with difference a square</a>, Amer. Math. Monthly, 56 (1949), 174-175.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexNumber.html">Hex Number</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Beal%27s_conjecture">Beal's conjecture</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-1).

%F a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1)) / 4. - _Michael Somos_, Feb 15 2011

%F G.f.: x * (1 - x) / (1 -14*x + x^2). - _Michael Somos_, Feb 15 2011

%F Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 12). - _Benoit Cloitre_, Dec 10, 2002

%F a(n) = S(n, 14) - S(n-1, 14) = T(2*n+1, 2)/2 with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 14)=A007655(n+1) and T(n, 2)=A001075(n). - _Wolfdieter Lang_, Nov 29 2002

%F a(n) = A001075(n)*A001075(n+1) - 1 and thus (a(n)+1)^6 has divisors A001075(n)^6 and A001075(n+1)^6 congruent to -1 modulo a(n) (cf. A350916). - _Max Alekseyev_, Jan 23 2022

%F 4*a(n)^2 - 3*b(n)^2 = 1 with b(n)=A028230(n+1), n>=0.

%F a(n)*a(n+3) = 168 + a(n+1)*a(n+2). - _Ralf Stephan_, May 29 2004

%F a(n) = 14*a(n-1) - a(n-2), a(0) = a(1) = 1. a(1 - n) = a(n) (compare A122571).

%F a(n) = 12*A076139(n) + 1 = 4*A076140(n) + 1. - _Alexander Adamchuk_, Apr 06 2007

%F a(n) = (1/12)*((7-4*sqrt(3))^n*(3-2*sqrt(3))+(3+2*sqrt(3))*(7+4*sqrt(3))^n -6). - _Zak Seidov_, May 06 2007

%F a(n) = A102871(n)^2+(A102871(n)-1)^2; sum of consecutive squares. E.g. a(4)=36^2+35^2. - Mason Withers (mwithers(AT)semprautilities.com), Jan 26 2008

%F a(n) = sqrt((3*A028230(n+1)^2 + 1)/4).

%F a(n) = A098301(n+1) - A001353(n)*A001835(n).

%F a(n) = A000217(A001571(n-1)) + A000217(A133161(n)), n>=1. - _Ivan N. Ianakiev_, Sep 24 2013

%F a(n)^2 = A001922(n-1)^3 - A001921(n-1)^3, for n >= 1. - _Bernard Schott_, Nov 20 2022

%F a(n) = 2^(2*n-3)*Product_{k=1..2*n-1} (2 - sin(2*Pi*k/(2*n-1))). _Michael Somos_, Dec 18 2022

%F a(n) = A003154(A101265(n)). - _Andrea Pinos_, Dec 19 2022

%e G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...

%p A001570:=-(-1+z)/(1-14*z+z**2); # _Simon Plouffe_ in his 1992 dissertation.

%t NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* _Zak Seidov_, May 06 2007 *)

%t f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* _Robert G. Wilson v_, Oct 28 2010 *)

%t a[c_, n_] := Module[{},

%t p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];

%t d := Denominator[Convergents[Sqrt[c], n p]];

%t t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];

%t Return[t];

%t ] (* Complement of A041017 *)

%t a[12, 20] (* _Gerry Martens_, Jun 07 2015 *)

%t LinearRecurrence[{14, -1}, {1, 13}, 19] (* _Jean-François Alcover_, Sep 26 2017 *)

%t CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* _Harvey P. Dale_, Sep 18 2024 *)

%o (PARI) {a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* _Michael Somos_, Feb 15 2011 */

%o (Magma) [((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // _G. C. Greubel_, Nov 04 2017

%Y Bisection of A003500/4. Cf. A006051, A001921, A001922.

%Y One half of odd part of bisection of A001075. First differences of A007655.

%Y Cf. A077417 with companion A077416.

%Y Row 14 of array A094954.

%Y Cf. A076139, A076140, A102871.

%Y A122571 is another version of the same sequence.

%Y Row 2 of array A188646.

%Y Cf. similar sequences listed in A238379.

%Y Cf. A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.

%Y Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=2.

%K nonn,easy,nice

%O 1,2

%A _N. J. A. Sloane_