Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3545 N1436 #228 Jan 03 2025 12:23:33
%S 0,1,4,18,96,600,4320,35280,322560,3265920,36288000,439084800,
%T 5748019200,80951270400,1220496076800,19615115520000,334764638208000,
%U 6046686277632000,115242726703104000,2311256907767808000,48658040163532800000,1072909785605898240000
%N a(n) = n*n! = (n+1)! - n!.
%C A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
%C Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - _Michael Somos_, Dec 11 2002
%C If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
%C Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - _Michael Somos_, Mar 04 2004
%C From _Michael Somos_, Apr 27 2012: (Start)
%C Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
%C Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
%C Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
%C Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
%C Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
%C Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
%C (End)
%C Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - _Emeric Deutsch_, Oct 02 2006
%C Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - _N. J. A. Sloane_, Apr 12 2014
%C a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - _Franklin T. Adams-Watters_, Nov 29 2006
%C Number of factors in a determinant when writing down all multiplication permutations. - _Mats Granvik_, Sep 12 2008
%C a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - _Emeric Deutsch_, Sep 21 2008
%C Equals eigensequence of triangle A002024 ("n appears n times"). - _Gary W. Adamson_, Dec 29 2008
%C Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - _Gary W. Adamson_, Apr 17 2009
%C Row lengths of the triangle in A030298. - _Reinhard Zumkeller_, Mar 29 2012
%C a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - _Eric W. Weisstein_, Oct 14 2014
%C When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - _Tilman Piesk_, Apr 29 2017
%C a(n-1) is the number of permutations on n elements with no cycles of length n. - _Dennis P. Walsh_, Oct 02 2017
%C The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - _Amiram Eldar_, Apr 13 2020
%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
%D J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
%D F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.
%H T. D. Noe, <a href="/A001563/b001563.txt">Table of n, a(n) for n = 0..100</a>
%H J. D. H. Dickson, <a href="/A002775/a002775.pdf">Discussion of two double series arising from the number of terms in determinants of certain forms</a>, Proc. London Math. Soc., 10 (1879), 120-122. [Annotated scanned copy]
%H Loïc Foissy, <a href="https://arxiv.org/abs/2406.01120">The antipode of of [sic] a Com-PreLie Hopf algebra</a>, arXiv:2406.01120 [math.CO], 2024. See p. 9.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=30">Encyclopedia of Combinatorial Structures 30</a>.
%H Milan Janjic, <a href="https://old.pmf.unibl.org/wp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>.
%H L. B. W. Jolley, <a href="https://archive.org/details/summationofserie00joll">Summation of Series</a>, Dover, 1961.
%H I. Kortchemski, <a href="http://arxiv.org/abs/0804.0446">Asymptotic behavior of permutation records</a>, arXiv: 0804.0446v2 [math.CO], 18 May 2008.
%H C. Lanczos, <a href="/A002457/a002457.pdf">Applied Analysis</a> (Annotated scans of selected pages).
%H Rezsö L. Lovas and István Mezö, <a href="https://arxiv.org/abs/1008.0713">On an exotic topology of the integers</a>, arXiv:1008.0713 [math.GN], 2010. See p. 4.
%H Daniel J. Mundfrom, <a href="http://dx.doi.org/10.1006/eujc.1994.1057">A problem in permutations: the game of `Mousetrap'</a>, European J. Combin. 15 (1994), no. 6, 555-560.
%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
%H J. Ser, <a href="/A002720/a002720_4.pdf">Les Calculs Formels des Séries de Factorielles</a>, Gauthier-Villars, Paris, 1933 [Local copy].
%H J. Ser, <a href="/A002720/a002720.pdf">Les Calculs Formels des Séries de Factorielles</a> (Annotated scans of some selected pages).
%H A. van Heemert, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002177749">Cyclic permutations with sequences and related problems</a>, J. Reine Angew. Math., 198 (1957), 56-72.
%H Dennis P. Walsh, <a href="http://capone.mtsu.edu/dwalsh/NOKCYCLB.pdf">The number of permutations with no k-cycles</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistinguishingNumber.html">Distinguishing Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ExponentialIntegral.html">Exponential Integral</a>.
%F From _Michael Somos_, Dec 11 2002: (Start)
%F E.g.f.: x / (1 - x)^2.
%F a(n) = -A021009(n, 1), n >= 0. (End)
%F The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - _Artur Jasinski_, Oct 22 2007
%F Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - _Karol A. Penson_, Sep 27 2001
%F a(0)=0, a(n) = n*a(n-1) + n!. - _Benoit Cloitre_, Feb 16 2003
%F a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - _Gerald McGarvey_, Jun 11 2004
%F Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - _Jianing Song_, May 07 2023]
%F a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
%F a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - _Vladeta Jovovic_, Sep 13 2006
%F a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - _Emeric Deutsch_, Sep 21 2008
%F The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
%F If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - _Milan Janjic_, Mar 01 2009
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
%F G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Apr 19 2013
%F G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 18 2013
%F G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 17 2013
%F G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Oct 22 2013
%F D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - _R. J. Mathar_, Jan 14 2020
%F a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - _Peter Luschny_, May 28 2020
%F From _Amiram Eldar_, Aug 04 2020: (Start)
%F Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
%F a(n) = Gamma(n)*A000290(n) for n > 0. - _Jacob Szlachetka_, Jan 01 2022
%e E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
%e G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
%p A001563 := n->n*n!;
%t Table[n!n,{n,0,25}] (* _Harvey P. Dale_, Oct 03 2011 *)
%o (PARI) {a(n) = if( n<0, 0, n * n!)} /* _Michael Somos_, Dec 11 2002 */
%o (Haskell)
%o a001563 n = a001563_list !! n
%o a001563_list = zipWith (-) (tail a000142_list) a000142_list
%o -- _Reinhard Zumkeller_, Aug 05 2013
%o (Magma) [Factorial(n+1)-Factorial(n): n in [0..20]]; // _Vincenzo Librandi_, Aug 08 2014
%o (Sage) [n*factorial(n) for n in (0..20)] # _G. C. Greubel_, Dec 30 2019
%o (GAP) List([0..20], n-> n*Factorial(n) ); # _G. C. Greubel_, Dec 30 2019
%Y Cf. A000142, A002024, A047920, A047922, A053495, A055089, A123513, A143946, A229837, A239069.
%Y Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
%Y Cf. sequences with formula (n + k)*n! listed in A282466.
%Y Row sums of A185105, A322383, A322384, A094485.
%K nonn,easy,nice,changed
%O 0,3
%A _N. J. A. Sloane_