login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1^n + 2^n + ... + 5^n.
(Formerly M3863 N1584)
11

%I M3863 N1584 #56 Oct 26 2024 10:13:56

%S 5,15,55,225,979,4425,20515,96825,462979,2235465,10874275,53201625,

%T 261453379,1289414505,6376750435,31605701625,156925970179,

%U 780248593545,3883804424995,19349527020825,96470431101379,481245667164585,2401809362313955,11991391850823225

%N a(n) = 1^n + 2^n + ... + 5^n.

%C a(n)*(-1)^n, n>=0, gives the z-sequence for the Sheffer triangle A049460 ((signed) 5-restricted Stirling1 numbers), which is the inverse triangle of A193685 (5-restricted Stirling2 numbers). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The a-sequence for each (signed) r-restricted Stirling1 Sheffer triangle is A027641/A027642 (Bernoulli numbers). - _Wolfdieter Lang_, Oct 10 2011

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001552/b001552.txt">Table of n, a(n) for n = 0..200</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=365">Encyclopedia of Combinatorial Structures 365</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15, -85, 225, -274, 120).

%F a(n) = Sum_{k=1..5} k^n, n >= 0.

%F O.g.f.: (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1 - j*x). - _Simon Plouffe_ in his 1992 dissertation

%F E.g.f.: exp(x)*(1-exp(5*x))/(1-exp(x)) = Sum_{j=1..5} exp(j*x) (trivial). - _Wolfdieter Lang_, Oct 10 2011

%t Table[Total[Range[5]^n], {n, 0, 40}] (* _T. D. Noe_, Oct 10 2011 *)

%o (PARI) a(n)=if(n<0,0,sum(k=1,5,k^n))

%o (Sage) [3**n + sigma(4, n) + 5**n for n in range(22)] # _Zerinvary Lajos_, Jun 04 2009

%o (Sage) [1 + 2**n + 3**n + 4**n + 5**n for n in range(22)] # _Zerinvary Lajos_, Jun 04 2009

%Y Column 5 of array A103438.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_