Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2030 N0802 #278 Aug 06 2024 23:54:17
%S 0,2,12,70,408,2378,13860,80782,470832,2744210,15994428,93222358,
%T 543339720,3166815962,18457556052,107578520350,627013566048,
%U 3654502875938,21300003689580,124145519261542,723573111879672
%N a(n) = 6*a(n-1) - a(n-2) for n > 1, a(0)=0 and a(1)=2.
%C Consider the equation core(x) = core(2x+1) where core(x) is the smallest number such that x*core(x) is a square: solutions are given by a(n)^2, n > 0. - _Benoit Cloitre_, Apr 06 2002
%C Terms > 0 give numbers k which are solutions to the inequality |round(sqrt(2)*k)/k - sqrt(2)| < 1/(2*sqrt(2)*k^2). - _Benoit Cloitre_, Feb 06 2006
%C Also numbers m such that A125650(6*m^2) is an even perfect square, where A124650(m) is a numerator of m*(m+3)/(4*(m+1)*(m+2)) = Sum_{k=1..m} 1/(k*(k+1)*(k+2)). Sequence A033581 is a bisection of A125651. - _Alexander Adamchuk_, Nov 30 2006
%C The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators = A001541 and denominators = {a(n)}. - _Clark Kimberling_, Aug 26 2008
%C Even Pell numbers. - _Omar E. Pol_, Dec 10 2008
%C Numbers k such that 2*k^2+1 is a square. - _Vladimir Joseph Stephan Orlovsky_, Feb 19 2010
%C These are the integer square roots of the Half-Squares, A007590(k), which occur at values of k given by A001541. Also the numbers produced by adding m + sqrt(floor(m^2/2) + 1) when m is in A002315. See array in A227972. - _Richard R. Forberg_, Aug 31 2013
%C A001541(n)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n), and 2*a(n)/A001541(n) is the closest rational approximation of sqrt(2) with a numerator not larger than 2*a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations of sqrt(2) with restricted numerator as well as denominator. - _A.H.M. Smeets_, May 28 2017
%C Conjecture: Numbers k such that c/m < k for all natural a^2 + b^2 = c^2 (Pythagorean triples), a < b < c and a+b+c = m. Numbers which correspondingly minimize c/m are A002939. - _Lorraine Lee_, Jan 31 2020
%C All of the positive integer solutions of a*b + 1 = x^2, a*c + 1 = y^2, b*c + 1 = z^2, x + z = 2*y, 0 < a < b < c are given by a=a(n), b=A005319(n), c=a(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0 < n. - _Michael Somos_, Jun 26 2022
%D Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
%D Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - _N. J. A. Sloane_, Mar 08 2022
%H T. D. Noe, <a href="/A001542/b001542.txt">Table of n, a(n) for n = 0..100</a>
%H I. Adler, <a href="http://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), 181-193.
%H Christian Aebi and Grant Cairns, <a href="https://arxiv.org/abs/2006.07566">Lattice Equable Parallelograms</a>, arXiv:2006.07566 [math.NT], 2020.
%H Hacène Belbachir, Soumeya Merwa Tebtoub, László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
%H H. Brocard, <a href="https://gdz.sub.uni-goettingen.de/id/PPN598948236_0004?tify={%22pages%22:[186],%22view%22:%22info%22}">Notes élémentaires sur le problème de Peel</a>, Nouvelle Correspondance Mathématique, 4 (1878), 161-169.
%H A. J. C. Cunningham, <a href="https://archive.org/details/binomialfactoris01cunn/page/n46/mode/1up">Binomial Factorisations</a>, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
%H S. Falcon, <a href="http://dx.doi.org/10.4236/am.2014.515216">Relationships between Some k-Fibonacci Sequences</a>, Applied Mathematics, 2014, 5, 2226-2234.
%H R. J. Hetherington, <a href="/A000129/a000129.pdf">Letter to N. J. A. Sloane, Oct 26 1974</a>.
%H J. M. Katri and D. R. Byrkit, <a href="http://www.jstor.org/stable/2313820">Problem E1976</a>, Amer. Math. Monthly, 75 (1968), 683-684.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H E. Kilic, Y. T. Ulutas, and N. Omur, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Omur/omur6.html">A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters</a>, J. Int. Seq. 14 (2011) #11.5.6, Table 3, k=1.
%H D. H. Lehmer, <a href="http://www.jstor.org/stable/1968268">On the multiple solutions of the Pell equation</a>, Annals Math., 30 (1928), 66-72.
%H D. H. Lehmer, <a href="/A001542/a001542.pdf">On the multiple solutions of the Pell equation</a> (annotated scanned copy).
%H Mathematical Reflections, <a href="https://www.awesomemath.org/wp-pdf-files/math-reflections/mr-2013-05/mr_4_2013_solutions.pdf">Solution to Problem O271</a>, Issue 5, 2013, p 22.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H B. Polster and M. Ross, <a href="https://arxiv.org/abs/1503.04658">Marching in squares</a>, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
%H Mark A. Shattuck, <a href="https://www.emis.de/journals/INTEGERS/papers/j5/j5.Abstract.html">Tiling proofs of some formulas for the Pell numbers of odd index</a>, Integers, 9 (2009), 53-64.
%H R. A. Sulanke, <a href="https://math.boisestate.edu/~sulanke/PAPERS/cutpasteII.pdf">Moments, Narayana numbers and the cut and paste for lattice paths</a>.
%H Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, <a href="https://hal.archives-ouvertes.fr/hal-02918958/document#page=18">Integer sequences and ellipse chains inside a hyperbola</a>, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1).
%F a(n) = 2*A001109(n).
%F a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) / (2*sqrt(2)).
%F G.f.: 2*x/(1-6*x+x^2).
%F a(n) = sqrt(2*(A001541(n))^2 - 2)/2. - _Barry E. Williams_, May 07 2000
%F a(n) = (C^(2n) - C^(-2n))/sqrt(8) where C = sqrt(2) + 1. - _Gary W. Adamson_, May 11 2003
%F For all terms x of the sequence, 2*x^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - _Gregory V. Richardson_, Oct 10 2002
%F For n > 0: a(n) = A001652(n) + A046090(n) - A001653(n); e.g., 70 = 119 + 120 - 169. Also a(n) = A001652(n - 1) + A046090(n - 1) + A001653(n - 1); e.g., 70 = 20 + 21 + 29. Also a(n)^2 + 1 = A001653(n - 1)*A001653(n); e.g., 12^2 + 1 = 145 = 5*29. Also a(n + 1)^2 = A084703(n + 1) = A001652(n)*A001652(n + 1) + A046090(n)*A046090(n + 1). - _Charlie Marion_, Jul 01 2003
%F a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))/(2*sqrt(2)). - _Antonio Alberto Olivares_, Dec 24 2003
%F 2*A001541(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + a(k)^2; e.g., 2*3*5*29 = 5^2 + 29^2 + 2^2; 2*99*29*5741 = 29^2 + 5741^2 + 70^2. - _Charlie Marion_, Oct 12 2007
%F a(n) = sinh(2*n*arcsinh(1))/sqrt(2). - _Herbert Kociemba_, Apr 24 2008
%F For n > 0, a(n) = A001653(n) + A002315(n-1). - _Richard R. Forberg_, Aug 31 2013
%F a(n) = 3*a(n-1) + 2*A001541(n-1); e.g., a(4) = 70 = 3*12 + 2*17. - _Zak Seidov_, Dec 19 2013
%F a(n)^2 + 1^2 = A115598(n)^2 + (A115598(n)+1)^2. - _Hermann Stamm-Wilbrandt_, Jul 27 2014
%F Sum _{n >= 1} 1/( a(n) + 1/a(n) ) = 1/2. - _Peter Bala_, Mar 25 2015
%F E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/sqrt(2). - _Ilya Gutkovskiy_, Dec 07 2016
%F A007814(a(n)) = A001511(n). See Mathematical Reflections link. - _Michel Marcus_, Jan 06 2017
%F a(n) = -a(-n) for all n in Z. - _Michael Somos_, Jan 20 2017
%F From _A.H.M. Smeets_, May 28 2017: (Start)
%F A051009(n) = a(2^(n-2)).
%F a(2n) = 2*a(2)*A001541(n).
%F A001541(n)/a(n) > sqrt(2) > 2*a(n)/A001541(n). (End)
%F a(A298210(n)) = A002349(2*n^2). - _A.H.M. Smeets_, Jan 25 2018
%F a(n) = A000129(n)*A002203(n). - _Adam Mohamed_, Jul 20 2024
%e G.f. = 2*x + 12*x^2 + 70*x^3 + 408*x^4 + 2378*x^5 + 13860*x^6 + ...
%p A001542:=2*z/(1-6*z+z**2); # conjectured by _Simon Plouffe_ in his 1992 dissertation
%p seq(combinat:-fibonacci(2*n, 2), n = 0..20); # _Peter Luschny_, Jun 28 2018
%t LinearRecurrence[{6, -1}, {0, 2}, 30] (* _Harvey P. Dale_, Jun 11 2011 *)
%t Fibonacci[2*Range[0,20], 2] (* _G. C. Greubel_, Dec 23 2019 *)
%t Table[2 ChebyshevU[-1 + n, 3], {n, 0, 20}] (* _Herbert Kociemba_, Jun 05 2022 *)
%o (Haskell)
%o a001542 n = a001542_list !! n
%o a001542_list =
%o 0 : 2 : zipWith (-) (map (6 *) $ tail a001542_list) a001542_list
%o -- _Reinhard Zumkeller_, Aug 14 2011
%o (Maxima)
%o a[0]:0$
%o a[1]:2$
%o a[n]:=6*a[n-1]-a[n-2]$
%o A001542(n):=a[n]$
%o makelist(A001542(x),x,0,30); /* _Martin Ettl_, Nov 03 2012 */
%o (PARI) {a(n) = imag( (3 + 2*quadgen(8))^n )}; /* _Michael Somos_, Jan 20 2017 */
%o (PARI) vector(21, n, 2*polchebyshev(n-1, 2, 33) ) \\ _G. C. Greubel_, Dec 23 2019
%o (Python)
%o l=[0, 2]
%o for n in range(2, 51): l+=[6*l[n - 1] - l[n - 2], ]
%o print(l) # _Indranil Ghosh_, Jun 06 2017
%o (Magma) I:=[0,2]; [n le 2 select I[n] else 6Self(n-1) -Self(n-2): n in [1..20]]; // _G. C. Greubel_, Dec 23 2019
%o (Sage) [2*chebyshev_U(n-1,3) for n in (0..20)] # _G. C. Greubel_, Dec 23 2019
%o (GAP) a:=[0,2];; for n in [3..20] do a[n]:=6*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Dec 23 2019
%Y Bisection of Pell numbers A000129: {a(n)} and A001653(n+1), n >= 0.
%Y Cf. A001108, A001353, A001541, A001835, A003499, A007805, A007913, A115598, A125650, A125651, A125652.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_