Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2825 N1138 #24 Feb 01 2022 23:45:00
%S 1,1,1,3,9,48,504,14188,1351563
%N NPN-equivalence classes of threshold functions of exactly n variables.
%D S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 20.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Goto, Eiichi, and Hidetosi Takahasi, <a href="/A000371/a000371_1.pdf">Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions</a>, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
%H S. Muroga, I. Toda and M. Kondo, <a href="https://doi.org/10.1090/S0025-5718-62-99195-0">Majority decision functions of up to six variables</a>, Math. Comp., 16 (1962), 459-472.
%H S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971 [Annotated scans of a few pages]
%H S. Muroga, T. Tsuboi and C. R. Baugh, <a href="https://doi.org/10.1109/T-C.1970.223046">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825.
%H S. Muroga, I. Toda and M. Kondo, <a href="/A001528/a001528.pdf">Majority decision functions of up to six variables</a>, Math. Comp., 16 (1962), 459-472. [Annotated partially scanned copy]
%H S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
%Y Cf. A001529.
%K nonn,more
%O 0,4
%A _N. J. A. Sloane_