%I M0809 N0306 #20 Jul 28 2015 12:27:42
%S 1,2,3,6,15,63,567,14755,1366318
%N NPN-equivalence classes of threshold functions of n or fewer variables.
%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
%D S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 19.
%D S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Goto, Eiichi, and Hidetosi Takahasi, <a href="/A000371/a000371_1.pdf">Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions</a>, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
%H S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971 [Annotated scans of a few pages]
%H S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
%Y Cf. A002078, A002079, A001530.
%K nonn,nice,more
%O 0,2
%A _N. J. A. Sloane_.