Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3603 N1462 #40 Jul 28 2017 09:38:40
%S 0,0,1,4,24,188,1705,16980,180670,2020120,23478426,281481880,
%T 3461873536,43494961404,556461656569,7230987646484,95244774132810,
%U 1269534571172912,17100621281619328,232511930087682528,3188042426888493288
%N a(n) is the number of c-nets with n+1 vertices and 2n edges, n >= 1.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Gheorghe Coserea, <a href="/A001506/b001506.txt">Table of n, a(n) for n = 1..200</a>
%H R. C. Mullin and P. J. Schellenberg, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80007-9">The enumeration of c-nets via triangulations</a>, J. Combin. Theory, 4 (1968), 259-276.
%F a(n) = A290326(n,n). - _Sean A. Irvine_, Sep 29 2015
%o (PARI)
%o A290326(n,k) = {
%o if (n < 3 || k < 3, return(0));
%o sum(i=0, k-1, sum(j=0, n-1,
%o (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
%o (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
%o 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
%o };
%o vector(21, n, A290326(n,n)) \\ _Gheorghe Coserea_, Jul 28 2017
%Y Cf. A290326.
%K nonn
%O 1,4
%A _N. J. A. Sloane_
%E Corrected and extended by _Sean A. Irvine_, Sep 29 2015
%E Name changed by _Gheorghe Coserea_, Jul 23 2017