Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4618 N1971 #23 Sep 05 2023 01:20:41
%S 1,-9,36,-84,117,-54,-177,540,-837,755,-54,-1197,2535,-3204,2520,-246,
%T -3150,6426,-8106,7011,-2844,-3549,10359,-15120,15804,-11403,2574,
%U 8610,-18972,25425,-25824,18954,-6165,-10080,25101,-35262,37799,-31374,17379,1929
%N Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^9 in powers of x.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A001487/b001487.txt">Table of n, a(n) for n = 9..10000</a>
%H H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440.
%H H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy)
%F a(n) = [x^n]( QPochhammer(-x) - 1 )^9. - _G. C. Greubel_, Sep 04 2023
%p g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
%p [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p end:
%p b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
%p (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
%p end:
%p a:= n-> b(n, 9):
%p seq(a(n), n=9..48); # _Alois P. Heinz_, Feb 07 2021
%t nmax=48; CoefficientList[Series[(Product[(1 - (-x)^j), {j,nmax}] -1)^9, {x,0,nmax}], x]//Drop[#,9] & (* _Ilya Gutkovskiy_, Feb 07 2021 *)
%t Drop[CoefficientList[Series[(QPochhammer[-x] -1)^9, {x,0,102}], x], 9] (* _G. C. Greubel_, Sep 04 2023 *)
%o (Magma)
%o m:=102;
%o R<x>:=PowerSeriesRing(Integers(), m);
%o Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^9 )); // _G. C. Greubel_, Sep 04 2023
%o (SageMath)
%o from sage.modular.etaproducts import qexp_eta
%o m=100; k=9;
%o def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
%o def A001487_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P( f(k,x) ).list()
%o a=A001487_list(m); a[k:] # _G. C. Greubel_, Sep 04 2023
%o (PARI) my(N=55,x='x+O('x^N)); Vec((eta(-x)-1)^9) \\ _Joerg Arndt_, Sep 05 2023
%Y Cf. A001482 - A001486, A001488, A047638 - A047649, A047654, A047655, A341243.
%K sign
%O 9,2
%A _N. J. A. Sloane_
%E Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021