Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4107 N1704 #28 Sep 04 2023 06:05:02
%S 1,-6,15,-20,9,24,-65,90,-75,6,90,-180,220,-180,66,110,-264,360,-365,
%T 264,-66,-178,375,-510,496,-414,180,60,-330,570,-622,582,-390,220,96,
%U -300,621,-630,705,-492,300,0,-235,420,-570,594,-735,420,-420,-120,219,-586,360
%N Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^6 in powers of x.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Robert Israel, <a href="/A001484/b001484.txt">Table of n, a(n) for n = 6..10000</a>
%H H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440.
%H H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy)
%F a(n) = [x^n] ( QPochhammer(-x) - 1 )^6. - _G. C. Greubel_, Sep 04 2023
%p N:= 100:
%p S:= series((mul(1-(-x)^j,j=1..N)-1)^6,x,N+1):
%p seq(coeff(S,x,j),j=6..N); # _Robert Israel_, Feb 05 2019
%t Drop[CoefficientList[Series[(QPochhammer[-x] -1)^6, {x,0,102}], x], 6] (* _G. C. Greubel_, Sep 04 2023 *)
%o (Magma)
%o m:=102;
%o R<x>:=PowerSeriesRing(Integers(), m);
%o Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^6 )); // _G. C. Greubel_, Sep 04 2023
%o (SageMath)
%o m=100; k=6;
%o def f(k,x): return (-1 + product( (1+x^j)*(1-x^(2*j))/(1+x^(2*j)) for j in range(1,m+2) ) )^k
%o def A001484_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P( f(k,x) ).list()
%o a=A001484_list(m); a[k:] # _G. C. Greubel_, Sep 04 2023
%o (PARI) my(N=70,x='x+O('x^N)); Vec((eta(-x)-1)^6) \\ _Joerg Arndt_, Sep 04 2023
%Y Cf. A001482, A001483, A001485 - A001488, A047638 - A047649, A047654, A047655, A341243.
%K sign
%O 6,2
%A _N. J. A. Sloane_
%E Edited by _Robert Israel_, Feb 05 2019