OFFSET
4,2
REFERENCES
J. M. Hammersley, A few seedings of research, in Proc. Sixth Berkeley Sympos. Math. Stat. and Prob., ed. L. M. le Cam et al., Univ. Calif. Press, 1972, Vol. I, pp. 345-394.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 4..300
R. M. Baer and P. Brock, Natural sorting over permutation spaces, Math. Comp. 22 1968 385-410.
FORMULA
Recurrence: (n-4)*(n+2)^2*(n+3)^2*(n+4)*(225*n^5 - 180*n^4 - 1713*n^3 + 1354*n^2 + 3326*n - 1604)*a(n) = (n+2)^2*(6750*n^9 - 4500*n^8 - 128025*n^7 + 28068*n^6 + 758512*n^5 - 184396*n^4 - 1719825*n^3 + 606292*n^2 + 573428*n - 274224)*a(n-1) - (n-1)*(61425*n^10 - 39915*n^9 - 1118034*n^8 + 644778*n^7 + 5929529*n^6 - 4355935*n^5 - 10322152*n^4 + 7841792*n^3 + 4333856*n^2 - 3087760*n - 58944)*a(n-2) + 2*(n-2)^2*(n-1)*(92250*n^8 - 88875*n^7 - 1380300*n^6 + 1835846*n^5 + 4241004*n^4 - 9250339*n^3 + 4259094*n^2 + 1427720*n - 1155840)*a(n-3) - 576*(n-3)^2*(n-2)^3*(n-1)*(225*n^5 + 945*n^4 - 183*n^3 - 2615*n^2 + 1300*n + 1408)*a(n-4). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 3 * 2^(4*n+9) / (Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Mar 15 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jul 01 2012
Name of the sequence clarified by Vaclav Kotesovec, Mar 18 2014
STATUS
approved