%I M4808 N2055 #31 Feb 15 2022 11:40:19
%S 1,11,188,2992,51708,930436,17127356,320726028,6086177116,
%T 116714440696,2257460877244,43974184178012,861732730297212,
%U 16973299816150504,335797855252698940,6669051330542560708,132899989069230881308,2656406833061149357920,53239449964640093020476
%N High temperature series for spin-1/2 Ising specific heat on 3-dimensional simple cubic lattice, divided by 3.
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. A. Baker, <a href="https://doi.org/10.1103/PhysRev.129.99">Further application of the Padé approximant method to the Ising and Heisenberg models</a>, Phys. Rev. 129 (1963) 99-102.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine]
%H A. J. Guttmann and I. G. Enting, <a href="https://doi.org/10.1088/0305-4470/27/24/012">The high-temperature specific heat exponent of the 3-dimensional Ising model</a>, J. Phys. A 27 (1994) 8007-8010.
%H G. S. Rushbrooke and J. Eve, <a href="http://dx.doi.org/10.1063/1.1703777">High-temperature Ising partition function and related noncrossing polygons for the simple cubic lattice</a>, J. Math. Physics 3 (1962) 185-189.
%H <a href="/index/Sp#specific_heat">Index entries for sequences related to specific heat</a>
%Y Equals A002916/3.
%K nonn,nice
%O 0,2
%A _N. J. A. Sloane_
%E Corrections and updates from _Steven Finch_
%E Terms a(13) and beyond from _Andrey Zabolotskiy_, Feb 15 2022