login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Weight distribution of binary [ 48,24,12 ] quadratic residue code.
0

%I #10 Sep 08 2022 08:44:29

%S 1,0,0,17296,535095,3995376,7681680,3995376,535095,17296,0,0,1

%N Weight distribution of binary [ 48,24,12 ] quadratic residue code.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 494, 604.

%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm">Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a>

%e x^48 + 17296*x^36*y^12 + 535095*x^32*y^16 + 3995376*x^28*y^20 + 7681680*x^24*y^24 + 3995376*x^20*y^28 + 535095*x^16*y^32 + 17296*x^12*y^36 + y^48.

%o (Magma) C:=QRCode(GF(2),47); D:=ExtendCode(C); W<x,y>:=WeightEnumerator(D); W;

%K nonn,fini,full

%O 0,4

%A _N. J. A. Sloane_