Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Feb 01 2022 01:30:31
%S 1,0,1,0,1,1,1,1,1,1,3,1,3,1,3,3,3,3,3,3,7,3,7,3,7,7,7,7,7,7,13,7,13,
%T 7,13,13,13,13,13,13,22,13,22,13,22,22,22,22,22,22,35,22,35,22,35,35,
%U 35,35,35,35,53,35,53,35,53,53,53,53,53,53,77,53,77
%N Number of (unordered) ways of making change for n cents using coins of 2, 5, 10, 20, 50 cents.
%C Number of partitions of n into parts 2, 5, 10, 20, and 50. - _Joerg Arndt_, Sep 05 2014
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
%D G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
%H T. D. Noe, <a href="/A001319/b001319.txt">Table of n, a(n) for n = 0..1000</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=184">Encyclopedia of Combinatorial Structures 184</a>
%H <a href="/index/Mag#change">Index entries for sequences related to making change.</a>
%H <a href="/index/Rec#order_87">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1).
%p 1/(1-x^2)/(1-x^5)/(1-x^10)/(1-x^20)/(1-x^50)
%t CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50)), {x, 0, 50}], x]
%Y First differences of A001313.
%K nonn
%O 0,11
%A _N. J. A. Sloane_