Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5222 N2272 #78 Jun 25 2023 02:33:29
%S 0,1,31,301,1701,6951,22827,63987,159027,359502,752752,1479478,
%T 2757118,4910178,8408778,13916778,22350954,34952799,53374629,79781779,
%U 116972779,168519505,238929405,333832005,460192005,626551380,843303006,1122998436,1480692556
%N Stirling numbers of the second kind S(n+4, n).
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A001298/b001298.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H M. Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Griffiths2/griffiths17.html">Remodified Bessel Functions via Coincidences and Near Coincidences</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">Stirling numbers of the 2nd kind</a>.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
%F G.f.: x(1 + 22x + 58x^2 + 24x^3)/(1 - x)^9. - _Paul Barry_, Aug 05 2004
%F a(n) = Stirling2(n+4, n) = Sum_{L=1..n} (Sum_{k=1..L} (Sum_{j=1..k} (Sum_{i=1..j} i*j*k*L))) = (n+4)*(n+3)*(n+2)*(n+1)*n *(15*n^3 + 30*n^2 + 5*n - 2)/5760 = (15*n^3 + 30*n^2 + 5*n - 2)*binomial(n+4, 5)/48. - _Vladeta Jovovic_, Jan 31 2005
%F E.g.f. with offset -3: exp(x)*(1*(x^4)/4! + 26*(x^5)/5! + 130*(x^6)/6! + 210*(x^7)/7! +105*(x^8)/8!). For the coefficients [1, 26, 130, 210, 105] see triangle A112493. E.g.f.: x*exp(x)*(15*x^7 + 600*x^6 + 8600*x^5 + 55248*x^4 + 162960*x^3 + 202560*x^2 + 83520*x + 5760)/5760. Above given e.g.f. differentiated three times.
%F O.g.f. is D^4(x/(1-x)), where D is the operator x/(1-x)*d/dx. - _Peter Bala_, Jul 02 2012
%F a(n) = A000915(-4-n) for all n in Z. - _Michael Somos_, Sep 04 2017
%p A001298:=-(1+22*z+58*z**2+24*z**3)/(z-1)**9; # _Simon Plouffe_ in his 1992 dissertation, without the leading 0
%t Table[StirlingS2[n+4, n], {n, 0, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *)
%t a[ n_] := n (n + 1) (n + 2) (n + 3) (n + 4) (15 n^3 + 30 n^2 + 5 n - 2) / 5760; (* _Michael Somos_, Sep 04 2017 *)
%o (PARI) {a(n) = n * (n+1) * (n+2) * (n+3) * (n+4) * (15*n^3 + 30*n^2 + 5*n - 2) / 5760}; /* _Michael Somos_, Sep 04 2017 */
%o (Sage) [stirling_number2(n+4,n) for n in range(0, 24)] # _Zerinvary Lajos_, May 16 2009
%o (Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(15*n^3 + 30*n^2 + 5*n - 2)/5760: n in [0..50]]; // _G. C. Greubel_, Oct 22 2017
%Y Cf. A001296, A001297, A008277, A008517, A094262.
%Y Cf. A000915.
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E Name edited and initial zero added by _Nathaniel Johnston_, Apr 30 2011