Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Feb 02 2022 04:52:45
%S 1,10,13,23,19,7,356,78999
%N Smallest number that takes n steps to reach 1 under iteration of sum-of-squares-of-digits map (= smallest "happy number" of height n).
%C Subsequent terms are too large to display in full.
%C a(8) = 3789 * 10^973 - 1 (3788 followed by 973 9's).
%C a(9) = 78889 * 10^((a(8) - 305)/81) - 1 (78888 followed by (421 * 10^973 - 34)/9 9's, specified by _Warut Roonguthai_ for UPINT3).
%C a(10) = 259 * 10^((a(9) - 93)/81) - 1.
%C a(11) = 179 * 10^((a(10) - 114)/81) - 1.
%C a(12) = 47 * 10^((a(11) - 52)/81) - 1.
%D Richard K. Guy, Unsolved Problems in Number Theory, Sect. E34. (2nd ed. UPINT2 = 1994, 3rd ed. UPINT3 = 2004)
%H Tianxin Cai and Xia Zhou, <a href="http://projecteuclid.org/euclid.rmjm/1225114174">On The Heights of Happy Numbers</a>, Rocky Mountain J. Math., Vol. 38, No. 6 (2008), 1921-1926.
%H H. G. Grundman and E. A. Teeple, <a href="http://www.fq.math.ca/41-4.html">Heights of happy numbers and cubic happy numbers</a>, Fib Quart. 41 (4) (2003) 301
%H Hans Havermann, <a href="http://chesswanks.com/blahg/odo/Blog/Entries/2010/5/2_Big_and_happy.html">Big and Happy</a>
%H Gabriel Lapointe, <a href="https://arxiv.org/abs/1904.12032">On finding the smallest happy numbers of any heights</a>, arXiv:1904.12032 [math.NT], 2019.
%H May Mei and Andrew Read-McFarland, <a href="http://arxiv.org/abs/1511.01441">Numbers and the Heights of their Happiness</a>, arXiv:1511.01441 [math.NT], 2015.
%Y Cf. A007770, A018785, A176762.
%K nonn,base
%O 0,2
%A _N. J. A. Sloane_
%E a(7), a(8) from _Jud McCranie_, Sep 15 1994
%E a(9)-a(12) from _Hans Havermann_, May 02 2010
%E Edited by _Hans Havermann_, May 03 2010, May 04 2010