Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #113 Sep 18 2024 15:44:56
%S 1089,10989,109989,1099989,10891089,10999989,108901089,109999989,
%T 1089001089,1098910989,1099999989,10890001089,10989010989,10999999989,
%U 108900001089,108910891089,109890010989,109989109989,109999999989,1089000001089,1089109891089
%N Numbers k such that 9*k = (k written backwards), k > 0.
%C This sequence contains the least n-digit non-palindromic number which is a factor of its reversal. Quotient is always 9. - _Lekraj Beedassy_, Jun 11 2004. (But it contains many other numbers as well. - _N. J. A. Sloane_, Jul 02 2013)
%C Nonzero fixed points of the map which sends x to x - reverse(x) if that is nonnegative, otherwise to x + reverse(x). - _Sébastien Dumortier_, Nov 05 2006. (Clarified comment, see A124074. - _Ray Chandler_, Oct 11 2017)
%C Numbers k such that reversal(k)=reversal(k+reversal(k)). Also numbers k such that reversal(k)=reversal(10*k-reversal(k)). - _Farideh Firoozbakht_, Jun 11 2010
%C From _M. F. Hasler_, Oct 04 2022: (Start)
%C (1) The first digit of any term must be 1, otherwise multiplication by 9 yields one more digit. For the same reason, no "overflow" must occur from the second to the first digit, so the last digit must be 9.
%C (2) Continuing the reasoning "from right to left" implies that the trailing nonzero digits must be ...9*89, where 9* means any nonnegative number of consecutive digits 9, preceded by a digit 0, which must be preceded by a digit 1. This implies that the initial and also final digits of any term must be 109*89. We might call a term of this form a "primitive" term. So there is exactly one primitive term b(k) = 11*10^(k-2)-11 with k digits, for all k >= 4.
%C (3) All terms of the sequence are a "symmetric" concatenation of such b(k)'s, "spaced out" with any number of digits 0, also in a symmetrical way: For any n >= 1, let k = (k[1], ..., k[n]) with k[n+1-j] = k[j] >= 4, and m = (m[1], ..., m[n-1]) (possibly of length 0) with m[n-j] = m[j] >= 0, then N = concat(b(k[j])*10^m[j], 1 <= j < n; k[n]) is a term of the sequence, and this yields all terms of the sequence. (For example, with 1089 we also have 1089{0...0}1089 and 1089,001089,001089, etc.) (End)
%D H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions d'Organisation, Paris, 1984.
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, under #1089.
%H Ray Chandler, <a href="/A001232/b001232.txt">Table of n, a(n) for n = 1..10000</a>
%H C. A. Van Cott, <a href="https://doi.org/10.1080/10724117.2020.1809284">The Integer Hokey Pokey</a>, Math Horizons, Vol. 28, pp. 24-27, November 2020.
%H L. H. Kendrick, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Kendrick/ken1.html">Young Graphs: 1089 et al.</a>, J. Int. Seq. 18 (2015) 15.9.7.
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1307.0453">2178 And All That</a>, arXiv:1307.0453 [math.NT], 2013; Fib. Quart., 52 (2014), 99-120.
%H Simon Weisgerber, <a href="https://doi.org/10.1007/s10516-023-09705-y">Value Judgments in Mathematics: GH Hardy and the (Non-)seriousness of Mathematical Theorems</a>, Global Phil. (2024) Vol. 34, Art. No. 1. See p. 8.
%F Theorem: Terms in this sequence have the form 99*m, where the decimal representation of m contains only 1's and 0's, is palindromic and contains no singleton 1's or 0's. Hence contains Fib(floor(k/2)-1) k-digit terms, k >= 4. - _David W. Wilson_, Dec 15 1997
%F a(A094707(n)) = 11*(10^n - 1) = 11*A002283(n) = 99*A002275(n), for n>1. - _Lekraj Beedassy_, Jun 11 2004. (Restored from history and corrected. - _Ray Chandler_, Oct 11 2017)
%F a(n) = 99*A061851(n) = A008918(n)/2. - _M. F. Hasler_, Oct 06 2022
%e 1089*9 = 9801.
%t Rest@Select[FromDigits /@ Tuples[{0, 99}, 11], IntegerDigits[9*#] == Reverse@IntegerDigits[#] &] (* _Arkadiusz Wesolowski_, Aug 14 2012 *)
%t okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 99#&/@Flatten[Table[ FromDigits/@ Select[Tuples[{0,1},n],okQ],{n,20}]] (* _Harvey P. Dale_, Jul 03 2013 *)
%o (PARI) isok(n) = 9*n == eval(concat(Vecrev(Str(n)))); \\ _Michel Marcus_, Feb 21 2015
%o (PARI) {A001232_row(n, L(v, s=0)=for(i=1, #v, s*=10^v[i]; i%2 && s+=10^v[i]\900); s)=if(n<4, [], L, Set(apply(L, self()(n, 0)))*99, L=List([[n]]); for(k=4, n\2, listput(L,[k,n-2*k,k]); for(p=0, n\2-k, foreach(self()(n-(k+p)*2, 0), M, listput(L, concat([[k, p], M, [p, k]]))))); L)} \\ List of n-digit terms. - _M. F. Hasler_, Oct 04 2022
%o concat(apply(A001232_row, [1..14]))
%o (Python)
%o def A001232_row(n, r=11): # list of n-digit terms
%o L = [] if n<4 else [[n]]
%o for L1 in range(4, n//2+1):
%o L.append([L1, n-2*L1, L1])
%o L.extend([L1,L2]+M+[L2,L1] for L2 in range(n//2-1-L1)
%o for M in A001232_row(n-(L1+L2)*2, 0))
%o if not r: return L
%o def f(L, s=0):
%o for k,L in enumerate(L):
%o s *= 10**L
%o if not k%2: s += 10**(L-2)-1
%o return r*s
%o return sorted(map(f, A001232_row(n, 0))) # _M. F. Hasler_, Oct 04 2022
%Y Cf. A008918, A008919, A193434, A222814, A222815, A031877, A124074.
%Y Cf. A002275, A002283, A004086, A094707.
%K base,nonn,nice
%O 1,1
%A _N. J. A. Sloane_ and _Simon Plouffe_
%E Corrected and extended by _David W. Wilson_, Aug 15 1996, Dec 15 1997
%E a(20)-a(21) from _Arkadiusz Wesolowski_, Aug 14 2012
%E a(1..10^4) in b-file double-checked with independent code by _M. F. Hasler_, Oct 04 2022