login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci frequency of n.
(Formerly M3207 N1298)
4

%I M3207 N1298 #37 Feb 28 2022 14:59:57

%S 0,4,3,2,3,1,2,2,1,2,3,1,3,2,3,1,2,1,2,2,2,2,2,0,3,3,2,2,3,1,2,2,3,2,

%T 2,1,3,2,3,2,3,2,3,2,1,2,3,1,3,2,2,3,3,2,3,2,2,3,4,1,2,2,2,3,3,1,3,2,2

%N Fibonacci frequency of n.

%C a(A235702(n)) = 0. - _Reinhard Zumkeller_, Jan 15 2014

%C a(n) is the least nonnegative integer k such that the function iterates f: {1, 2, ...} -> {1, 2, ...}, n -> f(n) = A001175(n), satisfy f^[k+1](n) = f^[k](n), where f^[0] is the identity map f^[0](n) = n and f^[k+1] = f o f^[k]. See the Fulton and Morris link, where the function f is called pi and a(n)= omega(n) for n >= 2, and omega(24) should be 0. (see the Zumkeller remark on the Hannon and Morris reference) - _Wolfdieter Lang_, Jan 18 2015

%D B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Jun 1968. [There is a typo in the value of a(24) given in the table on the last page.]

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller, <a href="/A001178/b001178.txt">Table of n, a(n) for n = 1..10000</a>

%H D. Fulton and W. L. Morris, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1621.pdf">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica, 16 (1969), 105-110.

%H B. H. Hannon and W. L. Morris, <a href="/A001175/a001175.pdf">Tables of Arithmetical Functions Related to the Fibonacci Numbers</a> [Annotated and scanned copy]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pisano_period">Pisano period</a>

%F See a comment above and the program.

%t pi[1] = 1;

%t pi[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k+1], n] == 1, Return[k]]];

%t a[n_] := Length[FixedPointList[pi, n]] - 2;

%t a /@ Range[100] (* _Jean-François Alcover_, Oct 28 2019 *)

%o (Haskell)

%o a001178 = f 0 where

%o f j x = if x == y then j else f (j + 1) y where y = a001175 x

%o -- _Reinhard Zumkeller_, Jan 15 2014

%o (Python)

%o from itertools import count

%o def A001178(n): # uses function from A001175

%o m = n

%o for c in count(0):

%o k = A001175(m)

%o if k == m:

%o return c

%o m = k # _Chai Wah Wu_, Feb 28 2022

%Y Cf. A001175, A235702.

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E a(24) corrected by _Reinhard Zumkeller_, Jan 15 2014