login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

sigma_3(n): sum of cubes of divisors of n.
(Formerly M4605 N1964)
159

%I M4605 N1964 #133 Jan 27 2024 05:25:23

%S 1,9,28,73,126,252,344,585,757,1134,1332,2044,2198,3096,3528,4681,

%T 4914,6813,6860,9198,9632,11988,12168,16380,15751,19782,20440,25112,

%U 24390,31752,29792,37449,37296,44226,43344,55261,50654,61740,61544,73710,68922,86688

%N sigma_3(n): sum of cubes of divisors of n.

%C If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).

%C Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6..24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

%C Also the eigenvalues of the Hecke operator T_n for the entire modular normalized Eisenstein form E_4(z) (see A004009): T_n E_4 = a(n) E_4, n >= 1. For the Hecke operator T_n and eigenforms see, e.g., the Koecher-Krieg reference, p. 207, eq. (5) and p. 211, section 4, or the Apostol reference p. 120, eq. (13) and pp. 129 - 133. - _Wolfdieter Lang_, Jan 28 2016

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

%D T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 120, 129 - 133.

%D G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.

%D Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_4(z).

%H T. D. Noe, <a href="/A001158/b001158.txt">Table of n, a(n) for n = 1..10000</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.

%H Joerg Arndt, <a href="http://arxiv.org/abs/1202.6525">On computing the generalized Lambert series</a>, arXiv:1202.6525v3 [math.CA], (2012).

%H D. B. Lahiri, <a href="https://doi.org/10.1017/S0004972700042179">Some arithmetical identities for Ramanujan's and divisor functions</a>, Bulletin of the Australian Mathematical Society, Volume 1, Issue 3 December 1969, pp. 307-314. See Theorem 2 p. 308.

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DivisorFunction.html">Divisor Function.</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F Multiplicative with a(p^e) = (p^(3e+3)-1)/(p^3-1). - _David W. Wilson_, Aug 01 2001

%F Dirichlet g.f. zeta(s)*zeta(s-3). - _R. J. Mathar_, Mar 04 2011

%F G.f.: sum(k>=1, k^3*x^k/(1-x^k)). - _Benoit Cloitre_, Apr 21 2003

%F Equals A051731 * [1, 8, 27, 64, 125, ...] = A127093 * [1, 4, 9, 16, 25, ...]. - _Gary W. Adamson_, Nov 02 2007

%F L.g.f.: -log(Product_{j>=1} (1-x^j)^(j^2)) = (1/1)*z^1 + (9/2)*z^2 + (28/3)*z^3 + (73/4)*z^4 + ... + (a(n)/n)*z^n + ... - _Joerg Arndt_, Feb 04 2011

%F a(n) = Sum{d|n} tau_{-2}^d*J_3(n/d), where tau_{-2} is A007427 and J_3 is A059376. - _Enrique Pérez Herrero_, Jan 19 2013

%F a(n) = A004009(n)/240. - _Artur Jasinski_, Sep 06 2016. See, e.g., Hardy, p. 166, (10.5.6), with Q = E_4, and with present offset 0. - _Wolfdieter Lang_, Jan 31 2017

%F 8*a(n) = sum of cubes of even divisors of 2*n. - _Wolfdieter Lang_, Jan 07 2017

%F G.f.: Sum_{n >= 1} x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4. - _Peter Bala_, Jan 11 2021

%F Faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3 + ((n + 1)^3 - 3*n^3)*q^n + (4 - 6*n^2)*q^(2*n) + (3*n^3 - (n - 1)^3)*q^(3*n) - n^3*q^(4*n) )/(1 - q^n)^4 - apply the operator x*d/dx three times to equation 5 in Arndt and then set x = 1. - _Peter Bala_, Jan 21 2021

%F a(n) = Sum_{1 <= i, j, k <= n} tau(gcd(i, j, k, n)) = Sum_{d divides n} tau(d)* J_3(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_3(n) = A059376(n). - _Peter Bala_, Jan 22 2024

%e G.f. = x + 9*x^2 + 28*x^3 + 73*x^4 + 126*x^5 + 252*x^6 + 344*x^7 + ...

%p seq(numtheory:-sigma[3](n),n=1..100); # _Robert Israel_, Feb 05 2016

%t Table[DivisorSigma[3,n],{n,100}] (* corrected by _T. D. Noe_, Mar 22 2009 *)

%o (PARI) N=99; q='q+O('q^N);

%o Vec(sum(n=1,N,n^3*q^n/(1-q^n))) /* _Joerg Arndt_, Feb 04 2011 */

%o (Sage) [sigma(n, 3) for n in range(1, 40)] # _Zerinvary Lajos_, Jun 04 2009

%o (Maxima) makelist(divsum(n,3),n,1,100); /* _Emanuele Munarini_, Mar 26 2011 */

%o (Magma) [DivisorSigma(3,n): n in [1..40]]; // _Bruno Berselli_, Apr 10 2013

%o (Haskell)

%o a001158 n = product $ zipWith (\p e -> (p^(3*e + 3) - 1) `div` (p^3 - 1))

%o (a027748_row n) (a124010_row n)

%o -- _Reinhard Zumkeller_, Jun 30 2013

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^3))}; /* _Michael Somos_, Jan 07 2017 */

%o (Python)

%o from sympy import divisor_sigma

%o def a(n): return divisor_sigma(n, 3)

%o print([a(n) for n in range(1, 43)]) # _Michael S. Branicky_, Jan 09 2021

%Y Cf. A000005, A000203, A001157.

%Y Cf. A051731, A127093.

%Y Cf. A027748, A124010.

%Y Cf. A004009, A064603 (partial sums).

%K nonn,easy,nice,mult

%O 1,2

%A _N. J. A. Sloane_, _R. K. Guy_