login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Describe the previous term! (method A - initial term is 8).
16

%I #31 Sep 15 2024 22:09:35

%S 8,18,1118,3118,132118,1113122118,311311222118,13211321322118,

%T 1113122113121113222118,31131122211311123113322118,

%U 132113213221133112132123222118,11131221131211132221232112111312111213322118,31131122211311123113321112131221123113111231121123222118

%N Describe the previous term! (method A - initial term is 8).

%C Method A = 'frequency' followed by 'digit'-indication.

%C a(n+1) - a(n) is divisible by 10^5 for n > 5. - _Altug Alkan_, Dec 04 2015

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.

%D I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

%H T. D. Noe, <a href="/A001151/b001151.txt">Table of n, a(n) for n=1..20</a>

%H J. H. Conway, <a href="http://dx.doi.org/10.1007/978-1-4612-4808-8_53">The weird and wonderful chemistry of audioactive decay</a>, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.

%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/cnwy/cnwy.html">Conway's Constant</a> [Broken link]

%H S. R. Finch, <a href="http://web.archive.org/web/20010207194413 /http://www.mathsoft.com/asolve/constant/cnwy/cnwy.html">Conway's Constant</a> [From the Wayback Machine]

%e E.g. the term after 3118 is obtained by saying "one 3, two 1's, one 8", which gives 132118.

%p freq := proc(i,L)

%p local f,p ;

%p if i > nops(L) or i < 1 then

%p return 0 ;

%p end if;

%p f := 1 ;

%p for p from i to 2 by -1 do

%p if op(p,L) = op(p-1,L) then

%p f := f+1 ;

%p else

%p return f;

%p end if;

%p end do:

%p f ;

%p end proc:

%p read("transforms"):

%p rle := proc(n)

%p local inL,i,outL,f ;

%p inL := convert(n,base,10) ;

%p i := nops(inL) ;

%p outL := [] ;

%p while i>0 do

%p f := freq(i,inL) ;

%p if f = 0 then

%p break;

%p else

%p outL := [op(outL),f,op(i,inL)] ;

%p i := i-f ;

%p end if;

%p end do:

%p digcatL(outL) ;

%p end proc:

%p A001151 := proc(n)

%p option remember ;

%p if n = 1 then

%p 8;

%p else

%p rle(procname(n-1)) ;

%p end if;

%p end proc:

%p seq(A001151(n),n=1..10) ; # _R. J. Mathar_, Feb 11 2021

%t RunLengthEncode[x_List] := (Through[{First, Length}[ #1]] &) /@ Split[x]; LookAndSay[n_, d_: 1] := NestList[Flatten[Reverse /@ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 8][[n]]; Table[FromDigits[F[n]], {n, 1, 11}] (* _Zerinvary Lajos_, Jul 08 2009 *)

%Y Cf. A001155, A005150, A006751, A006715, A001140, A001141, A001143, A001145, A001154.

%K nonn,base,easy,nice

%O 1,1

%A _N. J. A. Sloane_