Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5377 N2334 #81 Jun 25 2023 02:22:39
%S 1,0,0,0,0,120,1800,16800,126000,834120,5103000,29607600,165528000,
%T 901020120,4809004200,25292030400,131542866000,678330198120,
%U 3474971465400,17710714165200,89904730860000,454951508208120,2296538629446600,11570026582092000,58200094019430000
%N Number of labeled ordered set partitions into 5 parts for n>=1, a(0)=1.
%C Previous name: Differences of 0; labeled ordered partitions into 5 parts.
%C Number of surjections from an n-element set onto a five-element set, with n >= 5. - _Mohamed Bouhamida_, Dec 15 2007
%C For n > 0, the number of rows of n colors using exactly five colors. For n=5, the 120 rows are the 120 permutations of ABCDE. - _Robert A. Russell_, Sep 25 2018
%D H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
%D A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
%H Vincenzo Librandi, <a href="/A001118/b001118.txt">Table of n, a(n) for n = 0..1000</a>
%H K. S. Immink, <a href="http://www.exp-math.uni-essen.de/~immink/pdf/jsac13.pdf">Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols</a>, 2013.
%H P. A. Piza, <a href="http://www.jstor.org/stable/3029339">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260.
%H P. A. Piza, <a href="/A001117/a001117.pdf">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A. H. Voigt, <a href="http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05260001&seq=7">Theorie der Zahlenreihen und der Reihengleichungen</a>, Leipzig, 1911.
%H A. H. Voigt, <a href="/A000918/a000918.pdf">Theorie der Zahlenreihen und der Reihengleichungen</a>, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15, -85, 225, -274, 120).
%F a(n) = Sum_{i=0..4} (-1)^i*binomial(5, i)*(5-i)^n.
%F a(n) = [n=0] + 5!*S(n, 5).
%F E.g.f.: 1 + (e^x-1)^5.
%F a(n) = 5^n - C(5,4)*4^n + C(5,3)*3^n - C(5,2)*2^n + C(5,1). - _Mohamed Bouhamida_, Dec 15 2007
%F G.f.: (-274*x^4 + 225*x^3 - 85*x^2 + 15*x - 1)/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
%p A001118:=-120/(z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1); # Conjectured (correctly) by _Simon Plouffe_ in his 1992 dissertation. Gives sequence except for 5 leading terms.
%t CoefficientList[Series[(-1-274*x^4+225*x^3-85*x^2+15*x)/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)),{x,0,30}],x] (* _Vincenzo Librandi_, Apr 11 2012 *)
%t k=5; Prepend[Table[k!StirlingS2[n,k],{n,1,30}],1] (* _Robert A. Russell_, Sep 25 2018 *)
%o (PARI) a(n) = sum(i=0, 4, (-1)^i*binomial(5, i)*(5-i)^n); \\ _Altug Alkan_, Dec 04 2015
%o (PARI) Vec((-274*x^4 + 225*x^3 - 85*x^2 + 15*x - 1)/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1))+O(x^30)) \\ _Stefano Spezia_, Oct 16 2018
%Y Cf. A001117, A000919, A000920.
%Y Column 5 of A019538, n > 0.
%K nonn,easy
%O 0,6
%A _N. J. A. Sloane_
%E Extended with formula and alternate description by _Christian G. Bower_, Aug 15 1998
%E Name edited by _Harry Richman_, Mar 31 2023