Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1769 N0700 #318 May 16 2024 15:45:36
%S 1,2,7,26,97,362,1351,5042,18817,70226,262087,978122,3650401,13623482,
%T 50843527,189750626,708158977,2642885282,9863382151,36810643322,
%U 137379191137,512706121226,1913445293767,7141075053842,26650854921601,99462344632562,371198523608647
%N a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
%C Chebyshev's T(n,x) polynomials evaluated at x=2.
%C x = 2^n - 1 is prime if and only if x divides a(2^(n-2)).
%C Any k in the sequence is succeeded by 2*k + sqrt{3*(k^2 - 1)}. - _Lekraj Beedassy_, Jun 28 2002
%C For all elements x of the sequence, 12*x^2 - 12 is a square. Lim_{n -> infinity} a(n)/a(n-1) = 2 + sqrt(3) = (4 + sqrt(12))/2 which preserves the kinship with the equation "12*x^2 - 12 is a square" where the initial "12" ends up appearing as a square root. - _Gregory V. Richardson_, Oct 10 2002
%C This sequence gives the values of x in solutions of the Diophantine equation x^2 - 3*y^2 = 1; the corresponding values of y are in A001353. The solution ratios a(n)/A001353(n) are obtained as convergents of the continued fraction expansion of sqrt(3): either as successive convergents of [2;-4] or as odd convergents of [1;1,2]. - _Lekraj Beedassy_, Sep 19 2003 [edited by _Jon E. Schoenfield_, May 04 2014]
%C a(n) is half the central value in a list of three consecutive integers, the lengths of the sides of a triangle with integer sides and area. - Eugene McDonnell (eemcd(AT)mac.com), Oct 19 2003
%C a(3+6*k) - 1 and a(3+6*k) + 1 are consecutive odd powerful numbers. See A076445. - _T. D. Noe_, May 04 2006
%C The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence; essentially, numerators=A005320, denominators=A001075. - _Clark Kimberling_, Aug 27 2008
%C The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - _Clark Kimberling_, Aug 27 2008
%C a(n+1) is the Hankel transform of A000108(n) + A000984(n) = (n+2)*Catalan(n). - _Paul Barry_, Aug 11 2009
%C Also, numbers such that floor(a(n)^2/3) is a square: base 3 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001541. - _M. F. Hasler_, Jan 15 2012
%C Pisano period lengths: 1, 2, 2, 4, 3, 2, 8, 4, 6, 6, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - _R. J. Mathar_, Aug 10 2012
%C Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 3 = 0. - _Colin Barker_, Feb 04 2014
%C Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 48 = 0. - _Colin Barker_, Feb 10 2014
%C A triangle with row sums generating the sequence can be constructed by taking the production matrix M. Take powers of M, extracting the top rows.
%C M =
%C 1, 1, 0, 0, 0, 0, ...
%C 2, 0, 3, 0, 0, 0, ...
%C 2, 0, 0, 3, 0, 0, ...
%C 2, 0, 0, 0, 3, 0, ...
%C 2, 0, 0, 0, 0, 3, ...
%C ...
%C The triangle generated from M is:
%C 1,
%C 1, 1,
%C 3, 1, 3,
%C 11, 3, 3, 9,
%C 41, 11, 9, 9, 27,
%C ...
%C The left border is A001835 and row sums are (1, 2, 7, 26, 97, ...). - _Gary W. Adamson_, Jul 25 2016
%C Even-indexed terms are odd while odd-indexed terms are even. Indeed, a(2*n) = 2*(a(n))^2 - 1 and a(2*n+1) = 2*a(n)*a(n+1) - 2. - _Timothy L. Tiffin_, Oct 11 2016
%C For each n, a(0) divides a(n), a(1) divides a(2n+1), a(2) divides a(4*n+2), a(3) divides a(6*n+3), a(4) divides a(8*n+4), a(5) divides a(10n+5), and so on. Thus, a(k) divides a((2*n+1)*k) for each k > 0 and n >= 0. A proof of this can be found in Bhargava-Kedlaya-Ng's first solution to Problem A2 of the 76th Putnam Mathematical Competition. Links to the exam and its solutions can be found below. - _Timothy L. Tiffin_, Oct 12 2016
%C From _Timothy L. Tiffin_, Oct 21 2016: (Start)
%C If any term a(n) is a prime number, then its index n will be a power of 2. This is a consequence of the results given in the previous two comments. See A277434 for those prime terms.
%C a(2n) == 1 (mod 6) and a(2*n+1) == 2 (mod 6). Consequently, each odd prime factor of a(n) will be congruent to 1 modulo 6 and, thus, found in A002476.
%C a(n) == 1 (mod 10) if n == 0 (mod 6), a(n) == 2 (mod 10) if n == {1,-1} (mod 6), a(n) == 7 (mod 10) if n == {2,-2} (mod 6), and a(n) == 6 (mod 10) if n == 3 (mod 6). So, the rightmost digits of a(n) form a repeating cycle of length 6: 1, 2, 7, 6, 7, 2. (End)
%C a(A298211(n)) = A002350(3*n^2). - _A.H.M. Smeets_, Jan 25 2018
%C (2 + sqrt(3))^n = a(n) + A001353(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - _Wolfdieter Lang_, Feb 16 2018
%C Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001835. - _René Gy_, Feb 26 2018
%C Positive numbers k such that 3*(k-1)*(k+1) is a square. - _Davide Rotondo_, Oct 25 2020
%C a(n)*a(n+1)-1 = a(2*n+1)/2 = A001570(n) divides both a(n)^6+1 and a(n+1)^6+1. In other words, for k = a(2*n+1)/2, (k+1)^6 has divisors congruent to -1 modulo k (cf. A350916). - _Max Alekseyev_, Jan 23 2022
%D Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
%D Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
%H Indranil Ghosh, <a href="/A001075/b001075.txt">Table of n, a(n) for n = 0..1745</a> (terms 0..200 from T. D. Noe)
%H Christian Aebi and Grant Cairns, <a href="https://arxiv.org/abs/2006.07566">Lattice Equable Parallelograms</a>, arXiv:2006.07566 [math.NT], 2020.
%H Christian Aebi and Grant Cairns, <a href="https://arxiv.org/abs/2312.10866">Less than Equable Triangles on the Eisenstein lattice</a>, arXiv:2312.10866 [math.CO], 2023.
%H Krassimir T. Atanassov and Anthony G. Shannon, <a href="https://doi.org/10.7546/nntdm.2020.26.3.218-223">On intercalated Fibonacci sequences</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
%H C. Banderier and D. Merlini, <a href="http://algo.inria.fr/banderier/Papers/infjumps.ps">Lattice paths with an infinite set of jumps</a>, FPSAC02, Melbourne, 2002.
%H Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
%H H. Brocard, <a href="http://resolver.sub.uni-goettingen.de/purl?PPN598948236_0004/DMDLOG_0053">Notes élémentaires sur le problème de Peel [sic]</a>, Nouvelle Correspondance Mathématique, 4 (1878), 337-343.
%H Chris Caldwell, <a href="http://www.utm.edu/research/primes/prove/prove3_2.html">Primality Proving</a>, Arndt's theorem.
%H J. B. Cosgrave and K. Dilcher, <a href="https://doi.org/10.1090/mcom/3111">A role for generalized Fermat numbers</a>, Math. Comp., 2016.
%H G. Dresden and Y. Li, <a href="https://arxiv.org/abs/2210.04322">Periodic Weighted Sums of Binomial Coefficients</a>, arXiv:2210.04322 [math.NT], 2022.
%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.
%H Margherita Maria Ferrari and Norma Zagaglia Salvi, <a href="https://www.emis.de/journals/JIS/VOL20/Salvi/salvi3.html">Aperiodic Compositions and Classical Integer Sequences</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8.
%H R. K. Guy, <a href="/A001075/a001075.pdf">Letter to N. J. A. Sloane concerning A001075, A011943, A094347</a> [Scanned and annotated letter, included with permission]
%H Kiran S. Kedlaya, <a href="http://kskedlaya.org/putnam-archive/2015.pdf">The 76th William Lowell Putnam Mathematical Competition</a>, Dec 05 2015.
%H Kiran S. Kedlaya, <a href="http://kskedlaya.org/putnam-archive/2015s.pdf">Solutions to the 76th William Lowell Putnam Mathematical Competition</a>, Dec 05 2015.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Clark Kimberling, <a href="http://dx.doi.org/10.1007/s000170050020">Best lower and upper approximates to irrational numbers</a>, Elemente der Mathematik, 52 (1997) 122-126.
%H Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, <a href="https://arxiv.org/abs/1904.13002">The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d))</a>, arXiv:1904.13002 [math.NT], 2019.
%H Eugene McDonnell, <a href="https://code.jsoftware.com/wiki/Doc/Articles/Play123">Heron's Rule and Integer-Area Triangles</a>, At Play With J, 2010.
%H Valcho Milchev and Tsvetelina Karamfilova, <a href="https://arxiv.org/abs/1707.09741">Domino tiling in grid - new dependence</a>, arXiv:1707.09741 [math.HO], 2017.
%H Yong Hao Ng, <a href="https://math.stackexchange.com/a/2664328/130022">A partition in three classes of the set of all prime numbers?</a>, Mathematics Stack Exchange.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H F. V. Waugh and M. W. Maxfield, <a href="http://www.jstor.org/stable/2688511">Side-and-diagonal numbers</a>, Math. Mag., 40 (1967), 74-83.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1).
%F G.f.: (1 - 2*x)/(1 - 4*x + x^2). - _Simon Plouffe_ in his 1992 dissertation
%F E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
%F a(n) = 4*a(n-1) - a(n-2) = a(-n).
%F a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
%F a(n) = A001353(n+2) - 2*A001353(n+1).
%F a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
%F a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - _Philippe Deléham_, Mar 01, 2004
%F a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
%F a(n) = cosh(n * log(2 + sqrt(3))).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - _Paul Barry_, May 08 2003
%F a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - _Philippe Deléham_, Mar 03 2004
%F a(n) = 2*a(n-1) + 3*A001353(n-1). - _Lekraj Beedassy_, Jul 21 2006
%F a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - _Gary W. Adamson_, Dec 27 2006
%F Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - _Gary W. Adamson_, Nov 23 2007
%F First differences of A001571. - _N. J. A. Sloane_, Nov 03 2009
%F Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - _Michael Somos_, Sep 19 2008
%F a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - _Philippe Deléham_, Dec 06 2011
%F G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 28 2013
%F a(n) = Sum_{k=0..n} A238731(n,k). - _Philippe Deléham_, Mar 05 2014
%F a(n) = (-1)^n*(A125905(n) + 2*A125905(n-1)), n > 0. - _Franck Maminirina Ramaharo_, Nov 11 2018
%F a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - _Greg Dresden_, Oct 01 2020
%F From _Peter Bala_, Aug 17 2022: (Start)
%F a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
%F The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
%F The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
%F Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
%F Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
%F Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
%F a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - _Greg Dresden_, Oct 11 2022
%F 2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - _Greg Dresden_, Feb 07 2023
%e 2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
%e G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
%p A001075 := proc(n)
%p orthopoly[T](n,2) ;
%p end proc:
%p seq(A001075(n),n=0..30) ; # _R. J. Mathar_, Apr 14 2018
%t Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
%t CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* _Jean-François Alcover_, Dec 21 2011, after _Simon Plouffe_ *)
%t LinearRecurrence[{4,-1},{1,2},30] (* _Harvey P. Dale_, Aug 22 2015 *)
%t Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 15 2016 *)
%t ChebyshevT[Range[0, 20], 2] (* _Eric W. Weisstein_, May 26 2017 *)
%t a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* _Michael Somos_, Sep 05 2022 *)
%o (PARI) {a(n) = subst(poltchebi(abs(n)), x, 2)};
%o (PARI) {a(n) = real((2 + quadgen(12))^abs(n))};
%o (PARI) {a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
%o (PARI) a(n)=polchebyshev(n,1,2) \\ _Charles R Greathouse IV_, Nov 07 2016
%o (PARI) my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ _G. C. Greubel_, Dec 19 2017
%o (SageMath) [lucas_number2(n,4,1)/2 for n in range(0, 25)] # _Zerinvary Lajos_, May 14 2009
%o (Haskell)
%o a001075 n = a001075_list !! n
%o a001075_list =
%o 1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
%o -- _Reinhard Zumkeller_, Aug 11 2011
%o (SageMath)
%o def a(n):
%o Q = QuadraticField(3, 't')
%o u = Q.units()[0]
%o return (u^n).lift().coeffs()[0] # _Ralf Stephan_, Jun 19 2014
%o (Magma) I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 19 2017
%Y Bisections are A011943 and A094347.
%Y Cf. A001353, A065918, A071954, A001571, A001834, A003500, A016064, A082840, A026150, A277434.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _James A. Sellers_, Jul 10 2000
%E Chebyshev comments from _Wolfdieter Lang_, Oct 31 2002