Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 15 2019 18:42:12
%S 1,3,1,5,1,5,1,7,1,5,1,8,1,5,1,7,1,5,1,7,1,5,1,10,1,5,1,7,1,5,1,7,1,5,
%T 1,7,1,5,1,7,1,5,1,7,1,5,1,8,1,5,1,7,1,5,1,7,1,5,1,8,1,5,1,7,1,5,1,7,
%U 1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,7,1,5,1,8
%N Number of subgroups of order n in orthogonal group O(3).
%H Antti Karttunen, <a href="/A001051/b001051.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OrthogonalGroup.html">Orthogonal Group.</a>
%F Has period 1 5 1 7 except that a(2) = 3, a(4) = 5, a(12) = 8, a(24) = 10, a(48) = a(60) = a(120) = 8.
%t a[2] = 3; a[4] = 5; a[12] = 8; a[24] = 10; a[48] = a[60] = a[120] = 8; a[n_] := Switch[Mod[n, 4], 0, 7, 1, 1, 2, 5, 3, 1]; Table[a[n], {n, 1, 96}] (* _Jean-François Alcover_, Oct 15 2013 *)
%o (PARI) A001051(n) = if((12==n)||(48==n)||(60==n)||(120==n),8,if(24==n,10,if((4==n)||(2==n),1+n,[1,5,1,7][1+((n-1)%4)]))); \\ _Antti Karttunen_, Jan 15 2019
%Y The main sequences concerned with group theory are A000001, A000679, A001034, A001051, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A051881.
%K nonn,easy,nice
%O 1,2
%A _J. H. Conway_
%E Data section extended up to a(120) by _Antti Karttunen_, Jan 15 2019