login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!)^2.
(Formerly M3666 N1492)
122

%I M3666 N1492 #237 Dec 11 2024 15:54:19

%S 1,1,4,36,576,14400,518400,25401600,1625702400,131681894400,

%T 13168189440000,1593350922240000,229442532802560000,

%U 38775788043632640000,7600054456551997440000,1710012252724199424000000,437763136697395052544000000,126513546505547170185216000000

%N a(n) = (n!)^2.

%C Let M_n be the symmetrical n X n matrix M_n(i,j) = 1/Max(i,j); then for n > 0 det(M_n)=1/a(n). - _Benoit Cloitre_, Apr 27 2002

%C The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - _Simone Severini_, Feb 15 2006

%C a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - _David Callan_, Mar 30 2007

%C From _Emeric Deutsch_, Nov 22 2007: (Start)

%C Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.

%C Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.

%C Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.

%C Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.

%C (End)

%C G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2 = P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - _Mohammad K. Azarian_, Mar 28 2008

%C a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - _Enrique Pérez Herrero_, Aug 13 2011

%C The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - _Wolfdieter Lang_, Jan 09 2012

%C Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - _Joerg Arndt_, May 28 2012

%C a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. - _Dennis P. Walsh_, Nov 26 2012

%C From _Jerrold Grossman_, Jul 22 2018: (Start)

%C a(n) is the number of n X n 0-1 matrices whose row sums and column sums are both {1,2,...,n}.

%C a(n) is the number of linear arrangements of 2n blocks of n different colors, 2 of each color, such that there are an even number of blocks between each pair of blocks of the same color.

%C (End)

%C Number of ways to place n instances of a digit inside an n X n X n cube so that no two instances lie on a plane parallel to a face of the cube (see Khovanova link, Lemma 6, p. 22). - _Tanya Khovanova_ and _Wayne Zhao_, Oct 17 2018

%C Number of permutations P of length 2n which maximize Sum_{i=1..2n} |P_i - i|. - _Fang Lixing_, Dec 07 2018

%D Archimedeans Problems Drive, Eureka, 22 (1959), 15.

%D David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.

%D J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).

%D S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

%H T. D. Noe, <a href="/A001044/b001044.txt">Table of n, a(n) for n = 0..100</a>

%H P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

%H Daniel Dockery, <a href="https://web.archive.org/web/20140617132401/http://danieldockery.com/res/math/polygorials.pdf">Polygorials, Special "Factorials" of Polygonal Numbers</a>, preprint, 2003.

%H R. K. Guy, <a href="/A002186/a002186.pdf">Letters to N. J. A. Sloane, June-August 1968</a>.

%H G. S. Kazandzidis, <a href="http://www.hms.gr/apothema/?s=sa&amp;i=20">On a Conjecture of Moessner and a General Problem</a>, Bull. Soc. Math. Grèce, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30, 1961.

%H S. M. Kerawala, <a href="/A001623/a001623.pdf">The enumeration of the Latin rectangle of depth three by means of a difference equation</a>, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

%H T. Khovanova and W. Zhao, <a href="https://arxiv.org/abs/1808.06713">Mathematics of a Sudo-Kurve</a>, arXiv:1808.06713 [math.HO], 2018.

%H S. Kitaev and J. Remmel, <a href="http://dx.doi.org/10.1007/s00026-007-0313-2">Classifying descents according to parity</a>, Annals of Combinatorics, 11, 2007, 173-193.

%H Rob Pratt (Proposer), <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.04.365">Problem 11573</a>, Amer. Math. Monthly, 120 (2013), 372.

%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.

%H Simone Severini, <a href="http://www-users.york.ac.uk/~ss54">Title?</a> [dead link]

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - _Karol A. Penson_, Oct 09 2001

%F a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002

%F a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

%F a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - _Philippe Deléham_, Jan 07 2004

%F a(n) = !n!_1 = !n! = Product_{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004

%F D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - _Arkadiusz Wesolowski_, Oct 04 2011

%F From _Sergei N. Gladkovskii_, Jun 14 2012: (Start)

%F A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).

%F Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.

%F (End).

%F G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - _Sergei N. Gladkovskii_, Jan 15 2013

%F a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - _Mircea Merca_, Apr 04 2013

%F a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - _Mircea Merca_, Nov 12 2013

%F a(n) = A000290(A000142(n)). - _Michel Marcus_, Nov 12 2013

%F Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - _R. J. Mathar_, Feb 25 2014. Corrected by _Ilya Gutkovskiy_, Aug 16 2016

%F From _Ivan N. Ianakiev_, Aug 16 2016: (Start)

%F a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.

%F a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.

%F (End).

%F From _Ilya Gutkovskiy_, Aug 16 2016: (Start)

%F a(n) = A184877(n)*A184877(n-1).

%F Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)

%F Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - _Daniel Suteu_, Feb 06 2017

%F a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - _Vaclav Kotesovec_, Feb 19 2022

%F a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - _Ira M. Gessel_, Dec 10 2024

%e Consider the square array

%e 1, 2, 3, 4, 5, 6, ...

%e 2, 4, 6, 8, 10, 12, ...

%e 3, 6, 9, 12, 15, 18, ...

%e 4, 8, 12, 16, 20, 24, ...

%e 5, 10, 15, 20, 25, 30, ...

%e ...

%e then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003

%e a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012

%e 1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...

%p seq((n!)^2,n=0..20); # _Dennis P. Walsh_, Nov 26 2012

%t Table[n!^2, {n, 0, 20}] (* _Stefan Steinerberger_, Apr 07 2006 *)

%t Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* _Harvey P. Dale_, Mar 31 2020 *)

%o (PARI) a(n)=n!^2 \\ _Charles R Greathouse IV_, Jun 15 2011

%o (Haskell)

%o import Data.List (genericIndex)

%o a001044 n = genericIndex a001044_list n

%o a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list

%o -- _Reinhard Zumkeller_, Sep 05 2015

%o (Magma) [Factorial(n)^2: n in [0..20]]; // _Vincenzo Librandi_, Oct 24 2018

%o (GAP) List([0..20],n->Factorial(n)^2); # _Muniru A Asiru_, Oct 24 2018

%o (Python) import math

%o for n in range(0,20): print(math.factorial(n)**2, end=', ') # _Stefano Spezia_, Oct 29 2018

%Y Cf. A000142, A000292, A084939, A084940, A084941, A084942, A084943, A084944, A020549, A046032, A048617.

%Y First right-hand column of triangle A008955.

%Y Cf. A134434, A134435, A000442, A134375.

%Y Row n=2 of A225816.

%Y Cf. A000290.

%Y With signs, a row of A288580.

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_, _R. K. Guy_

%E More terms from _James A. Sellers_, Sep 19 2000

%E More terms from _Simone Severini_, Feb 15 2006