login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of symmetric foldings of a strip of n stamps.
(Formerly M0323 N0120)
4

%I M0323 N0120 #59 Jul 13 2022 12:06:49

%S 1,2,2,4,6,8,18,20,56,48,178,132,574,348,1870,1008,6144,2812,20314,

%T 8420,67534,24396,225472,74756,755672,222556,2540406,693692,8564622,

%U 2107748,28941258,6656376,98011464,20548932

%N Number of symmetric foldings of a strip of n stamps.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Jean-François Alcover, <a href="/A001010/b001010.txt">Table of n, a(n) for n = 1..52</a>

%H R. Dickau, <a href="http://www.robertdickau.com/symmetricfoldings.html">Symmetric Stamp Foldings</a>

%H R. Dickau, <a href="/A001010/a001010.pdf">Symmetric Stamp Foldings</a> [Cached copy, pdf format, with permission]

%H J. E. Koehler, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80048-1">Folding a strip of stamps</a>, J. Combin. Theory, 5 (1968), 135-152.

%H J. E. Koehler, <a href="/A001011/a001011_4.pdf">Folding a strip of stamps</a>, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]

%H Frank Ruskey, <a href="http://combos.org/meander">Information on Stamp Foldings</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StampFolding.html">Stamp Folding.</a>

%H <a href="/index/Fo#fold">Index entries for sequences obtained by enumerating foldings</a>

%F a(2n) = 2*A000682(n+2), a(2n+1) = 2*A007822(n). - _Sean A. Irvine_, Mar 18 2013

%t A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]];

%t A007822 = Cases[Import["https://oeis.org/A007822/b007822.txt", "Table"], {_, _}][[All, 2]];

%t a[n_] := Which[n == 1, 1, EvenQ[n], 2*A000682[[n/2 + 1]], OddQ[n], 2*A007822[[(n - 1)/2 + 1]]];

%t Array[a, 52] (* _Jean-François Alcover_, Sep 03 2019, updated Jul 13 2022 *)

%Y Cf. A007822, A000682.

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_, _Stéphane Legendre_