Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2413 N0956 #131 Aug 23 2024 12:16:59
%S 3,5,7,11,13,17,19,23,31,43,61,79,101,127,167,191,199,313,347,701,
%T 1709,2617,3539,5807,10501,10691,11279,12391,14479,42737,83339,95369,
%U 117239,127031,138937,141079,267017,269987,374321,986191,4031399
%N Wagstaff numbers: numbers k such that (2^k + 1)/3 is prime.
%C It is easy to see that the definition implies that k must be an odd prime. - _N. J. A. Sloane_, Oct 06 2006
%C The terms from a(32) on only give probable primes as of 2018. Caldwell lists the largest certified primes. - _Jens Kruse Andersen_, Jan 10 2018
%C Prime numbers of the form 1+Sum_{i=1..m} 2^(2i-1). - _Artur Jasinski_, Feb 09 2007
%C There is a new conjecture stating that a Wagstaff number is prime under the following condition (based on DiGraph cycles under the LLT): Let p be a prime integer > 3, N(p) = 2^p+1 and W(p) = N(p)/3, S(0) = 3/2 (or 1/4) and S(i+1) = S(i)^2 - 2 (mod N(p)). Then W(p) is prime iff S(p-1) == S(0) (mod W(p)). - _Tony Reix_, Sep 03 2007
%C As a member of the DUR team (Diepeveen, Underwood, Reix), and thanks to the LLR tool built by Jean Penne, I've found a new and big Wagstaff PRP: (2^4031399+1)/3 is Vrba-Reix PRP! This Wagstaff number has 1,213,572 digits and today is the 3rd biggest PRP ever found. I've done a second verification on a Nehalem core with the PFGW tool. - _Tony Reix_, Feb 20 2010
%C 13347311 and 13372531 were found to be terms of this sequence (maybe not the next ones) by _Ryan Propper_ in September 2013. - _Max Alekseyev_, Oct 07 2013
%C The next term is larger than 10 million. - _Gord Palameta_, Mar 22 2019
%C Ryan Propper found another likely term, 15135397, though it only corresponds to a probable prime. - _Charles R Greathouse IV_, Jul 01 2021
%D J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D S. S. Wagstaff, Jr., personal communication.
%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
%H C. Caldwell's The Top Twenty, <a href="https://t5k.org/top20/page.php?id=67">Wagstaff</a>.
%H C. Caldwell, <a href="https://t5k.org/mersenne/NewMersenneConjecture.html">New Mersenne Conjecture</a>
%H H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
%H H. Dubner and T. Granlund, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.
%H Editor's Note, <a href="/A000979/a000979.pdf">Table of Wagstaff primes sent by D. H. Lehmer</a> (annotated and scanned copy)
%H J. E. Foster, <a href="http://www.jstor.org/stable/3029104">Problem 174, A solution in primes</a>, Math. Mag., 27 (1954), 156-157.
%H R. K. Guy, <a href="/A000978/a000978.pdf">Letter to N. J. A. Sloane, Aug 1986</a>
%H R. K. Guy, <a href="/A005728/a005728.pdf">Letter to N. J. A. Sloane, 1987</a>
%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>
%H H. & R. Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=%282%5En%2B1%29%2F3&action=Search">PRP Top Records</a>.
%H Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/prptop.php">PRP Records.</a>
%H Gord Palameta, <a href="https://mersenneforum.org/showthread.php?t=24185">There are no new Wagstaff primes with exponent below 10 million</a>, mersenneforum.org
%H Ryan Propper et al., <a href="http://mersenneforum.org/showthread.php?t=18569">New Wagstaff PRP exponents</a>, mersenneforum.org
%H PRP top list: <a href="http://www.primenumbers.net/prptop/prptop.php?page=1#haut">PRP top</a> [From _Tony Reix_, Feb 20 2010]
%H Tony Reix, <a href="http://www.worldofnumbers.com/YPFM10184.htm">Yahoo Primeform Group Message 10184 dd. Feb 20, 2010</a>, reconstruction in html.
%H T. Reix, <a href="http://trex58.wordpress.com/math2matiques/">Some Maths about the Vrba-Reix PRP test</a> [From _Tony Reix_, Feb 20 2010]
%H Djurre G. Sikkema, <a href="https://fse.studenttheses.ub.rug.nl/33908">Probable primality testing for Wagstaff prime</a>, Bachelor's project mathematics, Univ. Groningen (Netherlands 2024). See p. 32.
%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WagstaffPrime.html">Wagstaff Prime</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Wagstaff_prime">Wagstaff prime</a>
%H R. G. Wilson, v, <a href="/A084740/a084740.pdf">Letter to N. J. A. Sloane, circa 1991.</a>
%F a(n) = A107036(n) for n>1. - _Alexander Adamchuk_, Feb 10 2007
%t Select[Range[5000], PrimeQ[(2^# + 1)/3] &] (* _Michael De Vlieger_, Jan 10 2018 *)
%t Select[Prime[Range[2,500]],PrimeQ[(2^#+1)/3]&] (* _Harvey P. Dale_, Jun 13 2022 *)
%o (PARI) forprime(p=2,5000,if(ispseudoprime(2^p\/3),print1(p", "))) \\ _Charles R Greathouse IV_, Jul 15 2011
%o (Haskell)
%o a000978 n = a000978_list !! (n-1)
%o a000978_list = filter ((== 1) . a010051 . a001045) a065091_list
%o -- _Reinhard Zumkeller_, Mar 24 2013
%o (Python)
%o from gmpy2 import divexact
%o from sympy import prime, isprime
%o A000978 = [p for p in (prime(n) for n in range(2,10**2)) if isprime(divexact(2**p+1,3))] # _Chai Wah Wu_, Sep 04 2014
%Y Cf. A107036 (indices of prime Jacobsthal numbers).
%Y Cf. A000979, A124400, A124401, A127955, A127956, A127957, A127958, A127936, A010051, A065091, A001045.
%K nonn,hard,nice,more
%O 1,1
%A _N. J. A. Sloane_, _Robert G. Wilson v_
%E a(30) from Kamil Duszenko (kdusz(AT)wp.pl), Feb 03 2003; a(30) was proved prime by Francois Morain with FastECPP. - _Tony Reix_, Sep 03 2007
%E a(31)-a(39) from _Robert G. Wilson v_, Apr 11 2005
%E a(40) from Vincent Diepeveen (diep(AT)xs4all.nl) added by _Alexander Adamchuk_, Jun 19 2008
%E a(41) from _Tony Reix_, Feb 20 2010