Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4847 N2072 #30 Mar 28 2017 14:42:38
%S 1,12,66,245,715,1768,3876,7752,14421,25300,42287,67860,105183,158224,
%T 231880,332112,466089,642341,870922,1163580,1533939,1997688,2572780,
%U 3279640,4141382,5184036,6436782,7932196,9706503,11799840,14256528,17125353,20459857
%N Fermat coefficients.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A000972/b000972.txt">Table of n, a(n) for n = 7..1000</a>
%H R. P. Loh, A. G. Shannon, A. F. Horadam, <a href="/A000969/a000969.pdf">Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients</a>, Preprint, 1980.
%H P. A. Piza, <a href="http://www.jstor.org/stable/3029103">Fermat coefficients</a>, Math. Mag., 27 (1954), 141-146.
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1,1,-6,15,-20,15,-6,1).
%F a(n) = A258708(n,n-7). - _Reinhard Zumkeller_, Jun 23 2015
%F G.f.: x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - _Colin Barker_, Mar 28 2017
%p a := n->floor((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!);
%t Table[Floor[((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!)],{n,1,30}] (* _Vincenzo Librandi_, Apr 10 2012 *)
%t With[{c=7!,t=Times@@(2n+Range[0,5])},Table[Floor[t/c],{n,30}]] (* _Harvey P. Dale_, Apr 20 2014 *)
%o [Floor((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/Factorial(7)): n in [1..30]]; // _Vincenzo Librandi_, Apr 10 2012
%o (Haskell)
%o a000972 n = a258708 n (n - 7) -- _Reinhard Zumkeller_, Jun 23 2015
%o (PARI) Vec(x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^50)) \\ _Colin Barker_, Mar 28 2017
%Y Cf. A258708.
%K nonn,easy
%O 7,2
%A _N. J. A. Sloane_