Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1148 N0437 #33 Sep 08 2022 08:44:28
%S 1,2,4,8,18,40,91,210,492,1165,2786,6710,16267,39650,97108,238824,
%T 589521,1459960,3626213,9030450,22542396,56393792,141358274,354975429,
%U 892893120,2249412290,5674891000,14335757256,36259245522,91815545800
%N Sum of Fermat coefficients.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Reinhard Zumkeller, <a href="/A000967/b000967.txt">Table of n, a(n) for n = 1..1000</a> (corrected by Sean A. Irvine, April 17, 2019)
%H R. P. Loh, A. G. Shannon, A. F. Horadam, <a href="/A000969/a000969.pdf">Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients</a>, Preprint, 1980.
%H P. A. Piza, <a href="http://www.jstor.org/stable/3029103">Fermat coefficients</a>, Math. Mag., 27 (1954), 141-146.
%F Following Piza's definition for the Fermat coefficients: (n:c)=binomial(2n-c, c-1)/c, a(n)= Round( sum_ {c=1..n} (n:c) ). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 13 2005
%F a(n) = rounded(sum(A258993(n,k)/(2*k+1)): k = 0..n-1). - _Reinhard Zumkeller_, Jun 22 2015
%e n...Sum_{c=1..n} (n:c).....a(n)
%e --------------------------------
%e .1........1.................1
%e .2........2.................2
%e .3........4.................4
%e .4........8+1/3.............8
%p FermatCoeff:=(n,c)->binomial(2*n-c,c-1)/c:seq(round(add(FermatCoeff(n,c),c=1..n)),n=1..40); # Pab Ter, Oct 13 2005
%t Table[Round[Sum[Binomial[n+k, n-k]/(2*k+1), {k, 0, n-1}]], {n,1,35}] (* _G. C. Greubel_, Apr 16 2019 *)
%o (Haskell)
%o import Data.Function (on)
%o a000967 n = round $ sum $
%o zipWith ((/) `on` fromIntegral) (a258993_row n) [1, 3 ..]
%o -- _Reinhard Zumkeller_, Jun 22 2015
%o (PARI) {a(n) = round(sum(k=0,n-1, binomial(n+k,n-k)/(2*k+1)))}; \\ _G. C. Greubel_, Apr 16 2019
%o (Magma) [Round((&+[Binomial(n+k,n-k)/(2*k+1): k in [0..n-1]])): n in [1..35]]; // _G. C. Greubel_, Apr 16 2019
%o (Sage) [round(sum(binomial(n+k,n-k)/(2*k+1) for k in (0..n-1))) for n in (1..35)] # _G. C. Greubel_, Apr 16 2019
%Y Cf. A143858, A258708.
%K nonn
%O 1,2
%A _N. J. A. Sloane_
%E More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 13 2005