Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5473 N2370 #69 Aug 26 2024 04:38:38
%S 0,0,0,0,0,720,15120,191520,1905120,16435440,129230640,953029440,
%T 6711344640,45674188560,302899156560,1969147121760,12604139926560,
%U 79694820748080,499018753280880,3100376804676480,19141689213218880,117579844328562000
%N Differences of 0: 6!*Stirling2(n,6).
%C Number of surjections from an n-element set onto a six-element set, with n >= 6. - _Mohamed Bouhamida_, Dec 15 2007
%C Number of rows of n colors using exactly six colors. For n=6, the 720 rows are the 720 permutations of ABCDEF. - _Robert A. Russell_, Sep 25 2018
%D H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
%D A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
%H Vincenzo Librandi, <a href="/A000920/b000920.txt">Table of n, a(n) for n = 1..1000</a>
%H P. A. Piza, <a href="http://www.jstor.org/stable/3029339">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260.
%H P. A. Piza, <a href="/A001117/a001117.pdf">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
%H A. H. Voigt, <a href="http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05260001&seq=7">Theorie der Zahlenreihen und der Reihengleichungen</a>, Leipzig, 1911.
%H A. H. Voigt, <a href="/A000918/a000918.pdf">Theorie der Zahlenreihen und der Reihengleichungen</a>, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (21,-175,735,-1624,1764,-720).
%F a(n) = Sum((-1)^i*binomial(6, i)*(6-i)^n, i = 0 .. 5).
%F a(n) = 6^n-C(6,5)*5^n+C(6,4)*4^n-C(6,3)*3^n+C(6,2)*2^n-C(6,1) with n>=6. - _Mohamed Bouhamida_, Dec 15 2007
%F G.f.: 720*x^6/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by _R. J. Mathar_, Sep 16 2009]
%F a(n) = 720*A000770(n). - _R. J. Mathar_, Apr 30 2015
%F E.g.f.: (exp(x) - 1)^6. - _Geoffrey Critzer_, May 17 2015
%p 720/(-1+z)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1);
%t CoefficientList[Series[(720*x^5)/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)),{x,0,30}],x] (* _Vincenzo Librandi_, Apr 11 2012 *)
%t k=6; Table[k!StirlingS2[n,k],{n,1,30}] (* _Robert A. Russell_, Sep 25 2018 *)
%o (Magma) [6^n-Binomial(6,5)*5^n+Binomial(6,4)*4^n-Binomial(6,3)*3^n+Binomial(6,2)*2^n-Binomial(6,1): n in [1..30]]; // _Vincenzo Librandi_, May 18 2015
%o (PARI) a(n) = 6!*stirling(n, 6, 2); \\ _Altug Alkan_, Sep 25 2018
%Y Cf. A001117, A001118, A000918, A000919, A000770.
%Y Column 6 of A019538.
%K nonn,easy
%O 1,6
%A _N. J. A. Sloane_