login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inequivalent ways of placing n nonattacking rooks on n X n board up to rotations and reflections of the board.
(Formerly M1761 N0698)
13

%I M1761 N0698 #69 Apr 22 2024 09:25:08

%S 1,1,2,7,23,115,694,5282,46066,456454,4999004,59916028,778525516,

%T 10897964660,163461964024,2615361578344,44460982752488,

%U 800296985768776,15205638776753680,304112757426239984,6386367801916347184

%N Number of inequivalent ways of placing n nonattacking rooks on n X n board up to rotations and reflections of the board.

%D L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.

%D R. C. Read, personal communication.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.

%H N. J. A. Sloane, <a href="/A000903/b000903.txt">Table of n, a(n) for n = 1..100</a>

%H P. J. Cameron, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

%H L. C. Larson, <a href="/A000900/a000900_1.pdf">The number of essentially different nonattacking rook arrangements</a>, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]

%H E. Lucas, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k29021h">Théorie des Nombres</a>, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.

%H E. Lucas, <a href="/A000899/a000899.pdf">Théorie des nombres</a> (annotated scans of a few selected pages)

%H R. C. Read, <a href="/A000684/a000684_1.pdf">Letter to N. J. A. Sloane, Oct. 29, 1976</a>

%H R. W. Robinson, <a href="http://dx.doi.org/10.1007/BFb0097382">Counting arrangements of bishops</a>, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).

%H R. W. Robinson, <a href="/A000899/a000899_1.pdf">Counting arrangements of bishops</a>, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)

%H Zvezdelina Stankova-Frenkel and Julian West, <a href="http://arxiv.org/abs/math/0103152">A new class of Wilf-equivalent permutations</a>, arXiv:math/0103152 [math.CO], 2001. See Fig. 9.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookNumber.html">Rook Number.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RooksProblem.html">Rooks Problem.</a>

%F If n>1 then a(n) = 1/8 * (F(n) + C(n) + 2 * R(n) + 2 * D(n)), where F(n) = A000142(n) [all solutions, i.e., factorials], C(n) = A037223(n) [central symmetric solutions], R(n) = A037224(n) [rotationally symmetric solutions] and D(n) = A000085(n) [symmetric solutions by reflection at a diagonal]. - _Matthias Engelhardt_, Apr 05 2000

%F For asymptotics see the Robinson paper.

%e For n=4 the 7 solutions may be taken to be 1234,1243,1324,1423,1432,2143,2413.

%p Maple programs for A000142, A037223, A122670, A001813, A000085, A000898, A000407, A000902, A000900, A000901, A000899, A000903

%p P:=n->n!; # Gives A000142

%p G:=proc(n) local k; k:=floor(n/2); k!*2^k; end; # Gives A037223, A000165

%p R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end; # Gives A122670, A001813

%p unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085

%p B:=proc(n) option remember; if n <= 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(B(n-1)); fi; 2*B(n-2) + (n-2)*B(n-4); end; # Gives A000898 (doubled up)

%p rho:=n->R(n)/2; # Gives A000407, aerated

%p beta:=n->B(n)/2; # Gives A000902, doubled up

%p delta:=n->(D(n)-B(n))/2; # Gives A000900

%p unprotect(gamma); gamma:=n-> if n <= 1 then RETURN(0) else (G(n)-B(n)-R(n))/4; fi; # Gives A000901, doubled up

%p alpha:=n->P(n)/8-G(n)/8+B(n)/4-D(n)/4; # Gives A000899

%p unprotect(sigma); sigma:=n-> if n <= 1 then RETURN(1); else P(n)/8+G(n)/8+R(n)/4+D(n)/4; fi; #Gives A000903

%t c[n_] := Floor[n/2]! 2^Floor[n/2];

%t r[n_] := If[Mod[n, 4] > 1, 0, m = Floor[n/4]; If[m == 0, 1, (2 m)!/m!]];

%t d[0] = d[1] = 1; d[n_] := d[n] = (n - 1)d[n - 2] + d[n - 1];

%t a[1] = 1; a[n_] := (n! + c[n] + 2 r[n] + 2 d[n])/8;

%t Array[a, 21] (* _Jean-François Alcover_, Apr 06 2011, after _Matthias Engelhardt_, further improved by _Robert G. Wilson v_ *)

%Y Cf. A000142, A037223, A037224, A000085, A005635, A099952, A263685.

%K nonn,nice

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _David W. Wilson_, Jul 13 2003