login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes <= product of first n primes, A002110(n).
21

%I #66 Sep 30 2020 03:52:56

%S 0,1,3,10,46,343,3248,42331,646029,12283531,300369796,8028643010,

%T 259488750744,9414916809095,362597750396740,15397728527812858,

%U 742238179058722891,40068968501510691894,2251262473052300960826,139566579945945392719413

%N Number of primes <= product of first n primes, A002110(n).

%H David Baugh, <a href="/A000849/b000849.txt">Table of n, a(n) for n = 0..19</a> (terms n = 18..19 found using Kim Walisch's primecount program).

%H R. Mestrovic, <a href="http://arxiv.org/abs/1211.4571">An elementary proof of an estimate for a number of primes less than the product of the first n primes</a>, arXiv:1211.4571 [math.NT], 2012.

%H C. D. Pruitt, <a href="http://web.archive.org/web/20120117034148/http://mathematical.com/mathprimorialproof.html">A Theorem & Proof on the Density of Primes Utilizing Primorials</a>

%H Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/primes.html">Tables of values of pi(x) and of pi2(x)</a>

%F a(n) = A000720(A002110(n)). - _Michel Marcus_, Aug 25 2014

%p seq(numtheory:-pi(mul(ithprime(i),i=1..n)),n=0..10); # _Robert Israel_, Aug 25 2014

%t a=1; Table[a=a*Prime[n]; PrimePi[a], {n, 12}]

%t Join[{0},PrimePi/@FoldList[Times,Prime[Range[12]]]] (* _Harvey P. Dale_, Jan 28 2019 *)

%o (PARI) t=1;forprime(p=2,66,print1(primepi(t),", ");t*=p); \\ _Joerg Arndt_, Aug 25 2014

%o (Sage) [prime_pi(sloane.A002110(n)) for n in range (14)] # _Giuseppe Coppoletta_, Mar 02 2015

%Y Cf. A000720, A002110, A003604.

%K nonn,hard

%O 0,3

%A James D. Ausfahl, gandalf(AT)hrn.office.ssi.net

%E More terms from _David W. Wilson_

%E a(10)-a(13) from _Paul Zimmermann_

%E a(14)-a(15) from _Donovan Johnson_, Mar 01 2010

%E a(16)-a(17) from _Henri Lifchitz_, Aug 25 2014

%E a(18)-a(19) from _David Baugh_, Sep 29 2020