OFFSET
0,3
COMMENTS
a(n) is the number of permutations of [ n ] allowing i->i+j (mod n), j=0..4.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
N. Metropolis et al., Permanents of cyclic (0,1) matrices, J. Combin. Theory, 7 (1969), 291-321.
H. Minc, Permanents of (0,1)-circulants, Canad. Math. Bull., 7 (1964), 253-263.
Index entries for linear recurrences with constant coefficients, signature (3, 0, -2, -2, -6, 2, 4, 2, 2, -1, -1).
FORMULA
G.f.: (41*x^15 +64*x^14 -48*x^13 -113*x^12 -213*x^11 -190*x^10 +122*x^9 +158*x^8 +150*x^7 +75*x^6 -60*x^5 -10*x^4 -2*x^3 +x^2 +2*x -1) / (-x^11 -x^10 +2*x^9 +2*x^8 +4*x^7 +2*x^6 -6*x^5 -2*x^4 -2*x^3 +3*x -1).
MAPLE
a:= n-> `if`(n<5, n!, (Matrix(11, (i, j)-> if i+1=j then 1 elif i=11 then [-1, -1, 2, 2, 4, 2, -6, -2, -2, 0, 3][j] else 0 fi)^(n+6). <<41, -16, 33, -1, 5, -1, 16, 5, 13, 29, 65>>)[1, 1]): seq(a(n), n=0..30);
MATHEMATICA
a[n_] := If[n<5, n!, ((Table[Which[i+1 == j, 1, i == 11, {-1, -1, 2, 2, 4, 2, -6, -2, -2, 0, 3}[[j]], True, 0], {i, 1, 11}, {j, 1, 11}] // MatrixPower[#, n+6]&).{41, -16, 33, -1, 5, -1, 16, 5, 13, 29, 65}) // First]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Oct 03 2003
Edited by Alois P. Heinz, Dec 18 2010
STATUS
approved