This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000800 Sum of upward diagonals of Eulerian triangle. 6
 1, 1, 1, 2, 5, 13, 38, 125, 449, 1742, 7269, 32433, 153850, 772397, 4088773, 22746858, 132601933, 807880821, 5132235182, 33925263901, 232905588441, 1657807491222, 12215424018837, 93042845392105, 731622663432978, 5931915237693517, 49535826242154973 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..600 (first 201 terms from Vincenzo Librandi) FORMULA G.f.: 1/(1-x/(1-x^2/(1-2x/(1-2x^2/(1-3x/(1-3x^2/(1-... (continued fraction). - Paul Barry, Mar 24 2010 a(n) = Sum_{k} A173018(n-k, k). - Michael Somos, Mar 17 2011 G.f.: 1/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x^2*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013 G.f.: 1/Q(0), where Q(k)=  1 - x - x*(x+1)*k - x^3*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013 a(n) = Sum_{m=0..n} (-1)^(n-m)*m!*Sum_{k=0..(n-m)/2} C(n-m-k,k)*stirling2(n-k,m). - Vladimir Kruchinin, Jan 23 2018 EXAMPLE 1 = 1, 1 = 1, 1 = 1 + 0, 2 = 1 + 1, 5 = 1 + 4 + 0, etc. G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 38*x^6 + 125*x^7 + 449*x^8 + 1742*x^9 + ... MAPLE b:= proc(n, k) option remember; `if`(k=0 and n>=0, 1,       `if`(k<0 or k>n, 0, (n-k)*b(n-1, k-1)+(k+1)*b(n-1, k)))     end: a:= n-> add(b(n-k, k), k=0..n): seq(a(n), n=0..30);  # Alois P. Heinz, Jan 23 2018 MATHEMATICA t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, k_] := t[n, k] = (n-k)*t[n-1, k-1] + (k+1)*t[n-1, k]; a[n_] := Sum[t[n-k, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 14 2011, after Michael Somos *) Table[Sum[Sum[(-1)^j*(k-j+1)^(n-k)*Binomial[n-k+1, j], {j, 0, k}], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 15 2015 *) PROG (Maxima) a(n):=sum(m!*sum((binomial(n-m-k, k)*stirling2(n-k, m)*(-1)^(-n+m)), k, 0, (n-m)/2), m, 0, n); /* Vladimir Kruchinin, Jan 23 2018 */ CROSSREFS Cf. A173018. Sequence in context: A148303 A148304 A149859 * A149860 A006823 A319378 Adjacent sequences:  A000797 A000798 A000799 * A000801 A000802 A000803 KEYWORD nonn,easy,nice AUTHOR Tony Harkin [ harkin(AT)mit.edu, tharkin(AT)vortex.weather.brockport.edu ] EXTENSIONS More terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)