login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.
(Formerly M2044 N0810)
19

%I M2044 N0810 #84 Mar 10 2022 03:24:20

%S 1,2,12,152,3472,126752,6781632,500231552,48656756992,6034272215552,

%T 929327412759552,174008703107274752,38928735228629389312,

%U 10255194381004799025152,3142142941901073853366272,1107912434323301224813002752,445427836895850552387642130432

%N Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.

%C Named after the German mathematician Hans Salié (1902-1978). - _Amiram Eldar_, Jun 10 2021

%D Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 86, Problem 32.

%D Hans Salié, Arithmetische Eigenschaften der Koeffizienten einer speziellen Hurwitzschen Potenzreihe, Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 12 (1963), pp. 617-618.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A000795/b000795.txt">Table of n, a(n) for n = 0..100</a>

%H Peter Bala, <a href="/A000795/a000795.pdf">A triangle for calculating A000795</a>, 2017.

%H L. Carlitz, <a href="https://doi.org/10.1007/BF01298317">The coefficients of cosh x/ cos x</a>, Monatshefte für Mathematik, Vol. 69, No. 2 (1965), pp. 129-135.

%H Timothy Chow and Richard Stanley, <a href="http://mathoverflow.net/questions/113983/sali%C3%A9-permutations-and-fair-permutations">Salié permutations and fair permutations</a>, MathOverflow, 2012.

%H Marc Deléglise and Jean-Louis Nicolas, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Deleglise/deleglise3.html">On the Largest Product of Primes with Bounded Sum</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.8.

%H J. M. Gandhi, <a href="http://www.jstor.org/stable/3029194">The coefficients of cosh x/ cos x and a note on Carlitz's coefficients of sinh x / sin x</a>, Math. Magazine, Vol. 31, No. 4 (1958), pp. 185-191..

%H J. M. Gandhi and V. S. Taneja, <a href="http://www.fq.math.ca/Scanned/10-4/gandhi.pdf">The coefficients of cosh x / cos x</a>, Fib. Quart., Vol. 10, No. 4 (1972), pp. 349-353.

%H M. S. Krick, <a href="http://www.jstor.org/stable/2687850">On the coefficients of cosh x / cos x</a>, Math. Mag., Vol. 34, No. 1 (1960), pp. 37-40.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>.

%F a(n) = Sum_{k=0..n} binomial(2n, 2k)*A000364(n-k). - _Philippe Deléham_, Dec 16 2003

%F a(n) = Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*A065547(n, k). - _Philippe Deléham_, Feb 26 2004

%F a(n) = Sum_{k>=0} A086646(n, k). - _Philippe Deléham_, Feb 26 2004

%F G.f.: 1 / (1 - (1^2+1)*x / (1 - 2^2*x / (1 - (3^2+1)*x / (1 - 4^2*x / (1 - (5^2+1)*x / (1 - 6^2*x / ...)))))). - _Michael Somos_, May 12 2012

%F G.f.: Q(0)/(1-2*x), where Q(k) = 1 - 8*x^2*(2*k^2+2*k+1)*(k+1)^2/( 8*x^2*(2*k^2+2*k+1)*(k+1)^2 - (1 - 8*x*k^2 - 4*x*k -2*x)*(1 - 8*x*k^2 - 20*x*k -14*x)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 22 2013

%F a(n) ~ (2*n)! * 2^(2*n+2) * cosh(Pi/2) / Pi^(2*n+1). - _Vaclav Kotesovec_, Mar 08 2014

%F a(n) = 1 - Sum_{k=1..n} (-1)^k * binomial(2*n,2*k) * a(n-k). - _Ilya Gutkovskiy_, Mar 09 2022

%e cosh x / cos x = Sum_{n>=0} a(n)*x^(2n)/(2n)! = 1 + x^2 + (1/2)*x^4 + (19/90)*x^6 + (31/360)*x^8 + (3961/113400)*x^10 + ...

%e G.f. = 1 + 2*x + 12*x^2 + 252*x^3 + 3472*x^4 + 126752*x^5 + 6781632*x^6 + ...

%p A000795 := proc(n)

%p (2*n)!*coeftayl( cosh(x)/cos(x),x=0,2*n) ;

%p end proc: # _R. J. Mathar_, Oct 20 2011

%t max = 16; se = Series[ Cosh[x] / Cos[x], {x, 0, 2*max} ]; a[n_] := SeriesCoefficient[ se, 2*n ]*(2*n)!; Table[ a[n], {n, 0, max} ] (* _Jean-François Alcover_, Apr 02 2012 *)

%t With[{nn=40},Take[CoefficientList[Series[Cosh[x]/Cos[x],{x,0,nn}],x] Range[ 0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, May 11 2012 *)

%t a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Cosh[ x] / Cos[ x], {x, 0, m}]]]; (* _Michael Somos_, Aug 15 2015 *)

%o (Sage) # Generalized algorithm of L. Seidel (1877)

%o def A000795_list(n) :

%o R = []; A = {-1:0, 0:0}

%o k = 0; e = 1

%o for i in range(n) :

%o Am = 1 if e == 1 else 0

%o A[k + e] = 0

%o e = -e

%o for j in (0..i) :

%o Am += A[k]

%o A[k] = Am

%o k += e

%o if e == -1 : R.append(A[-i//2])

%o return R

%o A000795_list(10) # _Peter Luschny_, Jun 02 2012

%Y A005647(n) = a(n)/2^n.

%Y Cf. A000364, A086646.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_