login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. exp(tan(x) + sec(x) - 1).
5

%I #41 Sep 08 2022 08:44:28

%S 1,1,2,6,23,107,583,3633,25444,197620,1684295,15618141,156453857,

%T 1683050189,19344093070,236497985706,3063827565763,41916787157011,

%U 603799270943519,9132945141812301,144708157060239704,2396568154933265024,41403636316192616995

%N E.g.f. exp(tan(x) + sec(x) - 1).

%C The number of elevated increasing binary trees. There is no restriction on the outdegree at the root. - _Wenjin Woan_, Jan 09 2008

%H Alois P. Heinz, <a href="/A000772/b000772.txt">Table of n, a(n) for n = 0..478</a> (first 101 terms from T. D. Noe)

%H Letong Hong and Rupert Li, <a href="https://arxiv.org/abs/2112.15081">Length-Four Pattern Avoidance in Inversion Sequences</a>, arXiv:2112.15081 [math.CO], 2021.

%F a(n) = Sum_{k=1..n} A147315(n-1,k-1), n>0, a(0)=1. - _Vladimir Kruchinin_, Mar 10 2011

%F a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x+x^2/2!)*d/dx. Cf. A000110 and A094198. See also A185422. - _Peter Bala_, Nov 25 2011

%F a(n) ~ 2^n * exp(2/Pi - 1 + 4*sqrt(n/Pi) - n) * n^(n - 1/4) / Pi^(n + 1/4). - _Vaclav Kotesovec_, Jan 27 2020

%p b:= proc(u, o) option remember;

%p `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))

%p end:

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p a(n-j)*binomial(n-1,j-1)*b(j, 0), j=1..n))

%p end:

%p seq(a(n), n=0..23); # _Alois P. Heinz_, May 19 2021

%t nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Tan[x] + Sec[x] - 1], {x, 0, nn}], x] (* _T. D. Noe_, Jun 20 2012 *)

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Tan(x) + Sec(x) - 1))); [Factorial(n-1)*b[n]: n in [1..m]]; // _Vincenzo Librandi_, Jan 30 2020

%Y Cf. A000110, A094198, A147315, A185422.

%K nonn

%O 0,3

%A _N. J. A. Sloane_