login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...
(Formerly M2787 N1122)
9

%I M2787 N1122 #41 Feb 04 2022 02:01:44

%S 1,3,9,22,51,107,217,416,775,1393,2446,4185,7028,11569,18749,29908,

%T 47083,73157,112396,170783,256972,383003,565961,829410,1206282,

%U 1741592,2497425,3557957,5037936,7091711,9927583,13823626,19151731,26404879,36236988,49509149

%N Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...

%C Convolution of A000712 and A001400. - _Vaclav Kotesovec_, Aug 18 2015

%D H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A000711/b000711.txt">Table of n, a(n) for n = 0..1000</a>

%H M. A. Harrison, <a href="/A000711/a000711.pdf">On the number of classes of binary matrices</a>, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F EULER transform of 3, 3, 3, 3, 2, 2, 2, 2, ...

%F G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*Product_{k>=1} (1 - x^k)^2).

%F a(n) ~ exp(2*Pi*sqrt(n/3)) * 3^(1/4) * n^(3/4) / (32*Pi^4). - _Vaclav Kotesovec_, Aug 18 2015

%e a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".

%p with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,3,2)): seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 08 2008

%t nn=31;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/Product[(1-x^i)^2,{i,1,nn}],{x,0,nn}],x] (* _Geoffrey Critzer_, Sep 28 2013 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Extended with formula from _Christian G. Bower_, Apr 15 1998

%E Edited by _Emeric Deutsch_, Mar 22 2005