Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2307 N0910 #59 Sep 08 2022 08:44:28
%S 1,1,3,4,5,7,9,14,18,24,31,43,55,72,94,123,156,200,254,324,408,513,
%T 641,804,997,1236,1526,1883,2308,2829,3451,4209,5109,6194,7485,9038,
%U 10871,13063,15654,18738,22365,26665,31716,37682,44669,52887,62494,73767
%N a(n) is the number of conjugacy classes in the alternating group A_n.
%D Girse, Robert D.; The number of conjugacy classes of the alternating group. Nordisk Tidskr. Informationsbehandling (BIT) 20 (1980), no. 4, 515-517.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A000702/b000702.txt">Table of n, a(n) for n = 1..1000</a> [a(1)=1 prepended by _Georg Fischer_, Sep 29 2020]
%H R. D. Girse, <a href="/A000702/a000702.pdf">The number of conjugacy classes of the alternating group</a>, Preprint and correspondence [Annotated scanned copy]
%H M. Osima, <a href="http://dx.doi.org/10.4153/CJM-1952-034-x">On the irreducible representations of the symmetric group</a>, Canad. J. Math., 4 (1952), 381-384.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlternatingGroup.html">Alternating Group.</a>
%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F a(n) = (p(n) + 3Q(n))/2 for n>1 where p(n) denotes the number of unrestricted partitions of n (A000041) and Q(n) the number of partitions of n into distinct odd parts (A000700). [Denes-Erdős-Turan]
%F a(n) = 2p(n) + 3*Sum_{r>=1} (-1)^r*p(n-2r^2) for n>1. [Girse]
%F Sum_{r>=0} (-1)^r*a(n-(3r^2 +- r)/2) = 3(-1)^t if n = 2t^2 or 0 otherwise, where p(u) and a(u) are taken as 0 unless u is a nonnegative integer and t = 1,2,3,... [Girse]
%e G.f. = x + x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 9*x^7 + 14*x^8 + 18*x^9 + ...
%t p = PartitionsP; q[n_] := SeriesCoefficient[ Product[ 1+x^(2k+1), {k, 0, n}], {x, 0, n}]; a[1]=1; a[n_] := (p[n] + 3*q[n])/2; Table[a[n], {n, 48}] (* _Jean-François Alcover_, Feb 22 2012, after first formula *)
%t a[ n_] := SeriesCoefficient[ ( 1 / QPochhammer[ x] + 3 / QPochhammer[ x, -x] ) / 2 - (2 + x), {x, 0, n}]; Table[a[n], {n, 1, 48}] (* _Michael Somos_, May 28 2014 *)
%o (Magma) [ NumberOfClasses(Alt(n)) : n in [1..10] ]; /* A useful example of MAGMA code, but it is better to use one of the formulas as below: */ A000702:= func< n | 2*NumberOfPartitions(n)+3*(&+[(-1)^r*NumberOfPartitions(n-2*r^2): r in [1..Isqrt(n div 2)]]) >; [1] cat [A000702(n): n in [2..48]]; // _Jason Kimberley_, Feb 01 2011
%o (PARI) default(seriesprecision,99);
%o Vec((1/eta(x)+3*eta(x^2)^2/(eta(x)*eta(x^4)))/2-(2+x)) /* _Joerg Arndt_, Feb 02 2011 */
%Y Cf. A073584.
%K nonn,nice,easy
%O 1,3
%A _N. J. A. Sloane_
%E a(1)=1 added by _N. J. A. Sloane_, Sep 14 2020
%E Follow-up corrections by _Andrey Zabolotskiy_, Sep 18 2020