Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0064 N0020 #194 Jul 14 2024 20:49:34
%S 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,7,1,1,
%T 1,4,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,11,1,1,1,2,
%U 1,1,1,6,1,1,2,2,1,1,1,5,5,1,1,2,1,1,1,3,1,2,1,2,1,1,1,7,1,2,2,4,1,1,1,3,1,1,1
%N Number of Abelian groups of order n; number of factorizations of n into prime powers.
%C Equivalently, number of Abelian groups with n conjugacy classes. - _Michael Somos_, Aug 10 2010
%C a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
%C Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - _Franklin T. Adams-Watters_, Oct 20 2006
%C Range is A033637.
%C a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - _Wolfdieter Lang_, Sep 09 2012
%C Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - _L. Edson Jeffery_, Nov 29 2012
%C Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - _R. J. Mathar_, Nov 05 2016
%C See A060689 for the number of non-abelian groups of order n. - _M. F. Hasler_, Oct 24 2017
%C Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - _Charles R Greathouse IV_, Jul 14 2024
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
%D D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
%D J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.
%H T. D. Noe, <a href="/A000688/b000688.txt">Table of n, a(n) for n = 1..10000</a>
%H Tak-Shing T. Chan, and Y.-H. Yang, <a href="https://doi.org/10.1109/TSP.2016.2612171">Polar n-Complex and n-Bicomplex Singular Value Decomposition and Principal Component Pursuit</a>, IEEE Transactions on Signal Processing ( Volume: 64, Issue: 24, Dec.15, 15 2016 ); DOI: 10.1109/TSP.2016.2612171.
%H I. G. Connell, <a href="http://cms.math.ca/10.4153/CMB-1964-002-1">A number theory problem concerning finite groups and rings</a>, Canad. Math. Bull, 7 (1964), 23-34.
%H I. G. Connell, <a href="/A000688/a000688.pdf">Letter to N. J. A. Sloane, no date</a>
%H P. Erdős and G. Szekeres, <a href="http://acta.bibl.u-szeged.hu/13441/1/math_007_095-102.pdf">Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem</a>, Acta Sci. Math. (Szeged), 7 (1935), 95-102.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/abel/abel.html">Abelian Group Enumeration Constants</a> [Broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010603070928/http://www.mathsoft.com/asolve/constant/abel/abel.html">Abelian Group Enumeration Constants</a> [broken link?] [From the Wayback machine]
%H P. Horak, <a href="http://dx.doi.org/10.2478/v10127-010-0004-y">Error-correcting codes and Minkowski's conjecture</a>, Tatra Mt. Math. Publ., 45 (2010), p. 40.
%H B. Horvat, G. Jaklic and T. Pisanski, <a href="http://arXiv.org/abs/math.CO/0503183">On the number of Hamiltonian groups</a>, arXiv:math/0503183 [math.CO], 2005.
%H D. G. Kendall, R. A. Rankin, <a href="http://dx.doi.org/10.1093/qmath/os-18.1.197">On the number of Abelian groups of a given order</a>, Q. J. Math. 18 (1947) 197-208.
%H Nobushige Kurokawa and Masato Wakayama, <a href="https://doi.org/10.3792/pjaa.78.126">Zeta extensions</a>. Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 126--130. <a href="http://www.ams.org/mathscinet-getitem?mr=1930216">MR1930216 (2003h:11112)</a>.
%H E. Molnár, <a href="http://www.bdim.eu/item?id=RLINA_1971_8_51_3-4_177_0">Sui mosaici dello spazio di dimensione n</a>, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 51 (1971), 177-185.
%H H.-E. Richert, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002382776&IDDOC=157448">Über die Anzahl Abelscher Gruppen gegebener Ordnung I</a>, Math. Zeitschr. 56 (1952) 21-32.
%H Marko Riedel, <a href="http://math.stackexchange.com/questions/955649/">Counting Abelian Groups</a>, Mathematics Stack Exchange, October 2014.
%H Laszlo Toth, <a href="http://arxiv.org/abs/1203.6473">A note on the number of abelian groups of a given order</a>, arXiv:1203.6473 [math.NT], (2012).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AbelianGroup.html">Abelian Group</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FiniteGroup.html">Finite Group</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KroneckerDecompositionTheorem.html">Kronecker Decomposition Theorem</a>
%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
%F a(2n) = A101872(n).
%F a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
%F n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - _Wolfdieter Lang_, Jul 23 2011
%F In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - _Marko Riedel_, Oct 03 2014
%F Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - _Álvar Ibeas_, Nov 05 2014
%F a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - _R. J. Mathar_, Nov 05 2016
%F A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - _R. J. Mathar_, May 26 2017
%F a(n) = A000001(n) - A060689(n). - _M. F. Hasler_, Oct 24 2017
%F From _Amiram Eldar_, Nov 01 2020: (Start)
%F a(n) = a(A057521(n)).
%F Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
%F a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - _Miles Englezou_, Feb 17 2024
%e a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
%e a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
%e From _Wolfdieter Lang_, Jul 22 2011: (Start)
%e a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
%e a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
%e (End)
%p with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # _James A. Sellers_, Dec 07 2000
%t f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* _Robert G. Wilson v_, Sep 22 2006 *)
%t Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - _Vladimir Joseph Stephan Orlovsky_, Jul 01 2011 *)
%o (PARI) A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ _Michael B. Porter_, Feb 08 2010
%o (PARI) a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ _Charles R Greathouse IV_, Apr 16 2015
%o (Sage)
%o def a(n):
%o F=factor(n)
%o return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
%o # _Ralf Stephan_, Jun 21 2014
%o (Haskell)
%o a000688 = product . map a000041 . a124010_row
%o -- _Reinhard Zumkeller_, Aug 28 2014
%o (Python)
%o from sympy import factorint, npartitions
%o from math import prod
%o def A000688(n): return prod(map(npartitions,factorint(n).values())) # _Chai Wah Wu_, Jan 14 2022
%Y Cf. A000001, A021002, A060689, A000041, A000961, A001055, A005361, A034382, A046054, A046055, A046056, A046101, A050360, A055653, A057521, A101872 (bisection), A101876 (quadrisection), A124010, A050361, A051532, A129667 (Dirichlet inverse).
%Y Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).
%K nonn,core,easy,nice,mult
%O 1,4
%A _N. J. A. Sloane_