login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonnegative solutions to x^2 + y^2 <= n^2.
(Formerly M2541 N1004)
14

%I M2541 N1004 #52 Jul 18 2024 14:29:28

%S 1,3,6,11,17,26,35,45,58,73,90,106,123,146,168,193,216,243,271,302,

%T 335,365,402,437,473,516,557,600,642,687,736,782,835,886,941,999,1050,

%U 1111,1167,1234,1297,1357,1424,1491,1564,1636,1703,1778,1852,1931,2012,2095

%N Number of nonnegative solutions to x^2 + y^2 <= n^2.

%C Row sums of triangle A255238. - _Wolfdieter Lang_, Mar 15 2015

%D H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A000603/b000603.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = n^2 * Pi/4 + O(n). - _Charles R Greathouse IV_, Apr 03 2013

%F a(n) = A001182(n) + 2*n + 1. - _R. J. Mathar_, Jan 07 2015

%F a(n) = 2*A026702(n) - (1 + floor(n/sqrt(2))), n >= 0. - _Wolfdieter Lang_, Mar 15 2015

%F a(n) = [x^(n^2)] (1 + theta_3(x))^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - _Ilya Gutkovskiy_, Apr 15 2018

%t Table[cnt = 0; Do[If[x^2 + y^2 <= n^2, cnt++], {x, 0, n}, {y, 0, n}]; cnt, {n, 0, 51}] (* _T. D. Noe_, Apr 02 2013 *)

%t Table[If[n==1,1,2*Sum[Sum[A255195[[n, n - k + 1]], {k, 1, k}], {k, 1, n}] - Ceiling[(n - 1)/Sqrt[2]]],{n,1,52}] (* _Mats Granvik_, Feb 19 2015 *)

%o (Haskell)

%o a000603 n = length [(x,y) | x <- [0..n], y <- [0..n], x^2 + y^2 <= n^2]

%o -- _Reinhard Zumkeller_, Jan 23 2012

%o (PARI) a(n)=my(n2=n^2);sum(a=0,n,sqrtint(n2-a^2)+1) \\ _Charles R Greathouse IV_, Apr 03 2013

%o (Python)

%o from math import isqrt

%o def A000603(n): return (m:=n<<1)+sum(isqrt(k*(m-k)) for k in range(1,n))+1 # _Chai Wah Wu_, Jul 18 2024

%Y Column k=2 of A302998.

%Y Cf. A000328, A036695, A036702, A255238, A255195.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _David W. Wilson_, May 22 2000