|
|
A000455
|
|
Digits of powers of 2.
(Formerly N0413)
|
|
3
|
|
|
1, 2, 4, 8, 1, 6, 3, 2, 6, 4, 1, 2, 8, 2, 5, 6, 5, 1, 2, 1, 0, 2, 4, 2, 0, 4, 8, 4, 0, 9, 6, 8, 1, 9, 2, 1, 6, 3, 8, 4, 3, 2, 7, 6, 8, 6, 5, 5, 3, 6, 1, 3, 1, 0, 7, 2, 2, 6, 2, 1, 4, 4, 5, 2, 4, 2, 8, 8, 1, 0, 4, 8, 5, 7, 6, 2, 0, 9, 7, 1, 5, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The number 0.a(0)a(1)a(2)...=0.124816... is a rich (or disjunctive) number. - Robert FERREOL, Apr 01 2020
|
|
REFERENCES
|
Archimedeans Problems Drive, Eureka, 11 (1949), 10.
David Gale, Tracking the Automatic ANT And Other Mathematical Explorations, 1998, pp. 42-43.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 0..9999
|
|
MATHEMATICA
|
2^Range[0, 25] // IntegerDigits // Flatten (* Jean-François Alcover, Feb 08 2016 *)
|
|
PROG
|
(Scala) (List.fill(32)(2: BigInt)).scanLeft(1: BigInt)(_ * _).map(_.toString.toCharArray).flatten.map(_.toInt - 48) // Alonso del Arte, Mar 28 2020
|
|
CROSSREFS
|
Cf. A000079.
Sequence in context: A210026 A100880 A102256 * A282821 A317495 A317504
Adjacent sequences: A000452 A000453 A000454 * A000456 A000457 A000458
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
N. J. A. Sloane; entry revised by N. J. A. Sloane, Jun 10 2012
|
|
STATUS
|
approved
|
|
|
|