Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #87 Feb 19 2023 16:26:42
%S 1,21,321,4321,54321,654321,7654321,87654321,987654321,10987654321,
%T 1110987654321,121110987654321,13121110987654321,1413121110987654321,
%U 151413121110987654321,16151413121110987654321,1716151413121110987654321,181716151413121110987654321
%N Concatenation of numbers from n down to 1.
%C The first prime term in this sequence is a(82) (see A176024). - _Artur Jasinski_, Mar 30 2008
%C For n < 10^4, a(n)/A000217(n) is an integer for n = 1, 2, and 18. The integers are 1, 7 (prime), and 1062667552123515268933651, respectively. - _Derek Orr_, Sep 04 2014
%D F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ
%H T. D. Noe, <a href="/A000422/b000422.txt">Table of n, a(n) for n = 1..150</a>
%H R. W. Stephan, <a href="http://www.ark.in-berlin.de/sm.pdf">Factors and primes in two Smarandache sequences</a>
%H Bertrand Teguia Tabuguia, <a href="https://arxiv.org/abs/2201.07127">Explicit formulas for concatenations of arithmetic progressions</a>, arXiv:2201.07127 [math.CO], 2022.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConsecutiveNumberSequences.html">Consecutive Number Sequences</a>
%H <a href="/index/Mo#MWP">Index entries for sequences related to Most Wanted Primes video</a>
%F a(n+1) = (n+1)*10^len(a(n)) + a(n), where len(k) = number of digits in k.
%F a(n) = Sum_{k=1..n} k*10^(A058183(k) - (1+floor(log10(k)))). - _Alexander Goebel_, Mar 07 2020
%F From _Serge Batalov_, Dec 08 2021: (Start)
%F a(n) = ((n*9-1)*10^n+1)/9^2 for n < 10,
%F a(n) = ((n*99-1)*10^(2*n-19)-89)/99^2*10^10 + (8*10^10+1)/9^2 for 10 <= n < 100,
%F a(n) = ((n*999-1)*10^(3*n-299)-989)/999^2*10^191 + c2 for 10^2 <= n < 10^3,
%F a(n) = ((n*9999-1)*10^(4*n-3999)-9989)/9999^2*10^2892 + c3 for 10^3 <= n < 10^4,
%F a(n) = ((n*99999-1)*10^(5*n-49999)-99989)/99999^2*10^38893 + c4 for 10^4 <= n < 10^5,
%F a(n) = ((n*999999-1)*10^(6*n-599999)-999989)/999999^2*10^488894 + c5 for 10^5 <= n < 10^6,
%F where
%F c2 = (98*10^191 + 879*10^10 + 121)/99^2 = a(99),
%F c3 = (998*10^2701 - 989)/999^2*10^191 + c2 = a(999),
%F c4 = (9998*10^36001 - 9989)/9999^2*10^2892 + c3 = a(9999),
%F c5 = (99998*10^450001 - 99989)/99999^2*10^38893 + c4 = a(99999).
%F (End)
%p a[1]:= 1:
%p for n from 2 to 100 do
%p a[n]:= n*10^(1+ilog10(a[n-1])) + a[n-1]
%p od:
%p seq(a[n],n=1..100); # _Robert Israel_, Sep 05 2014
%p # second Maple program:
%p a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(n, a(n-1)))) end:
%p seq(a(n), n=1..22); # _Alois P. Heinz_, Jan 12 2021
%t b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 30}]; b (* _Artur Jasinski_, Mar 30 2008 *)
%t Table[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]],{n,20}] (* _Harvey P. Dale_, Jul 06 2019 *)
%o (PARI) a(n)=my(t=n);forstep(k=n-1,1,-1,t=t*10^#Str(k)+k);t \\ _Charles R Greathouse IV_, Jul 15 2011
%o (PARI) A000422(n,p=1,L=1)=sum(k=1,n,k*p*=L+(k==L&&!L*=10)) \\ _M. F. Hasler_, Nov 02 2016
%o (Python)
%o def a(n): return int("".join(map(str, range(n, 0, -1))))
%o print([a(n) for n in range(1, 19)]) # _Michael S. Branicky_, Dec 08 2021
%Y Cf. A007908, A058183, A104759, A116504, A116505, A138789, A138790, A138793.
%Y See A176024 for primes.
%K nonn,base
%O 1,2
%A R. Muller
%E Edited by _N. J. A. Sloane_, Dec 03 2021