login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of singular n X n rational (0,1)-matrices.
(Formerly M4308 N1803)
10

%I M4308 N1803 #28 Jun 05 2020 15:05:43

%S 0,0,6,425,65625,27894671,35716401889,144866174953833

%N Number of singular n X n rational (0,1)-matrices.

%C Number of all n X n (0,1)-matrices having distinct, nonzero ordered rows and determinant 0 - compare A000409.

%C a(n) is the number of singular n X n rational {0,1}-matrices with no zero rows and with all rows distinct, up to permutation of rows and so a(n) = binomial(2^n-1,n) - A088389(n). Cf. A116506, A116507, A116527, A116532. - _Vladeta Jovovic_, Apr 03 2006

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. Metropolis and P. R. Stein, <a href="https://doi.org/10.1016/S0021-9800(67)80006-1">On a class of (0,1) matrices with vanishing determinants</a>, J. Combin. Theory, 3 (1967), 191-198.

%H Miodrag Zivkovic, <a href="https://arxiv.org/abs/math/0511636">Classification of small (0,1) matrices</a>, arXiv:math/0511636 [math.CO], 2005.

%H Miodrag Zivkovic, <a href="https://doi.org/10.1016/j.laa.2005.10.010">Classification of small (0,1) matrices</a>, Linear Algebra and its Applications, 414 (2006), 310-346.

%H <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a>

%F n! * a(n) = A046747(n) - 2^(n^2) + n! * binomial(2^n -1, n).

%Y Cf. A000409, A046747, A064230, A064231.

%K nonn,nice,more

%O 1,3

%A _N. J. A. Sloane_

%E n=7 term from Guenter M. Ziegler (ziegler(AT)math.TU-Berlin.DE)

%E a(8) from _Vladeta Jovovic_, Mar 28 2006