|
|
A000401
|
|
Numbers of form x^2 + y^2 + 2z^2.
|
|
2
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numbers represented by quadratic form with Gram matrix [ 1, 0, 0; 0, 1, 0; 0, 0, 2 ].
|
|
REFERENCES
|
L. E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math. Soc., 33 (1927) 63-70. [http://projecteuclid.org/euclid.bams/1183491956]
W. Sierpiński, Elementary Theory of Numbers, (Ed. A. Schinzel) North-Holland 1988, see Exercise 4 on p. 395.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..1000
G. Nebe and N. J. A. Sloane, Home page for this lattice
|
|
FORMULA
|
These are the numbers not of the form 4^k*(16*n + 14). [Dickson] - Everett W. Howe, May 18 2008
|
|
MAPLE
|
L := [seq(0, i=1..1)]: for x from 0 to 20 do for y from 0 to 20 do for z from 0 to 20 do if member(x^2+y^2+2*z^2, L)=false then L := [op(L), x^2+y^2+2*z^2] fi: od: od: od: L2 := sort(L): for i from 1 to 100 do printf(`%d, `, L2[i]) od:
|
|
MATHEMATICA
|
q=16; imax=q^2; Select[Union[Flatten[Table[x^2+y^2+2*z^2, {z, 0, q}, {y, 0, q}, {x, 0, q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
|
|
CROSSREFS
|
Complement of A055039.
Sequence in context: A195099 A195098 A102452 * A023807 A023755 A335522
Adjacent sequences: A000398 A000399 A000400 * A000402 A000403 A000404
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from James A. Sellers, May 31 2000
|
|
STATUS
|
approved
|
|
|
|