Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3844 N1574 #625 Dec 07 2024 08:02:18
%S 0,1,5,14,30,55,91,140,204,285,385,506,650,819,1015,1240,1496,1785,
%T 2109,2470,2870,3311,3795,4324,4900,5525,6201,6930,7714,8555,9455,
%U 10416,11440,12529,13685,14910,16206,17575,19019,20540,22140,23821,25585,27434,29370
%N Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.
%C The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - _Jud McCranie_, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - _Charles R Greathouse IV_, Jun 21 2013] [See A351830 for further related comments and references.]
%C Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
%C Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - _Sen-Peng Eu_, Apr 05 2001
%C Gives number of squares formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002
%C a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - _Michael Somos_, Mar 13 2004
%C Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
%C Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - _Lekraj Beedassy_, Aug 06 2004
%C Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
%C Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
%C Kekulé numbers for certain benzenoids. - _Emeric Deutsch_, Jun 12 2005
%C Sum of the first n positive squares. - _Cino Hilliard_, Jun 18 2007
%C Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
%C If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - _Milan Janjic_, Sep 19 2007
%C We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - _Alexander R. Povolotsky_, Nov 21 2007
%C The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - _Alexander R. Povolotsky_, Dec 10 2007
%C Convolution of A000290 with A000012. - _Sergio Falcon_, Feb 05 2008
%C Hankel transform of binomial(2*n-3, n-1) is -a(n). - _Paul Barry_, Feb 12 2008
%C Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - _Gary W. Adamson_, Jun 13 2008
%C Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
%C Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - _Reinhard Zumkeller_, Mar 07 2009
%C Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - _Johannes W. Meijer_, Mar 07 2009
%C The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - _Bruno Berselli_, Apr 21 2010, Apr 03 2012
%C a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - _Jaroslav Krizek_, May 23 2010
%C Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - _Carmine Suriano_, Sep 10 2010
%C From _J. M. Bergot_, Aug 23 2011: (Start)
%C Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
%C Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
%C From _Ant King_, Oct 17 2012: (Start)
%C For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
%C For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
%C Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - _R. J. Mathar_, Oct 17 2012
%C Sum of entries of n X n square matrix with elements min(i,j). - _Enrique Pérez Herrero_, Jan 16 2013
%C The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - _Martin Renner_, Mar 06 2013
%C For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - _Richard R. Forberg_, Aug 20 2013
%C A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - _Gary Detlefs_, Jan 02 2014
%C The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - _John F. Richardson_, Mar 27 2014
%C Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - _Jonathan Sondow_, Jun 21 2014
%C Odd numbered entries are related to dissections of polygons through A100157. - _Tom Copeland_, Oct 05 2014
%C From _Bui Quang Tuan_, Apr 03 2015: (Start)
%C We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
%C Here is an example with n = 5:
%C 1
%C 1 2
%C 1 2 3
%C 1 2 3 4
%C 1 2 3 4 5
%C 1 2 3 4
%C 1 2 3
%C 1 2
%C 1
%C (End)
%C The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - _Tony Foster III_, Sep 05 2016; see Dougherty et al. link p. 2. - _Andrey Zabolotskiy_, Oct 13 2016
%C Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - _Hugo Pfoertner_, Mar 28 2018
%C The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - _Richard Turk_, Jul 03 2018
%C Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - _Peter Bala_, Feb 12 2019
%C n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - _Bernard Schott_, Jan 10 2020
%C For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - _Milan Janjic_, Jan 28 2020
%C Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - _Altug Alkan_, Jul 30 2020
%C The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - _Robert Israel_, Dec 04 2024
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
%D H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
%D J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
%D E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
%D M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
%D M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
%D Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.
%H Felix Fröhlich, <a href="/A000330/b000330.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from T. D. Noe)
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H L. Ancora, <a href="https://drive.google.com/file/d/0B4iaQ-gBYTaJMDJFd2FFbkU2TU0/view?usp=sharing">Quadrature of the Parabola with the Square Pyramidal Number</a>, Mondadori Education, Archimede 66, No. 3, 139-144 (2014).
%H Jack Anderson, Amy Woodall, and Alexandru Zaharescu, <a href="https://arxiv.org/abs/2411.08398">Arithmetic Polygons and Sums of Consecutive Squares</a>, arXiv:2411.08398 [math.NT], 2024.
%H B. Babcock and A. van Tuyl, <a href="http://arxiv.org/abs/1109.5847">Revisiting the spreading and covering numbers</a>, arXiv preprint arXiv:1109.5847 [math.AC], 2011.
%H J. L. Bailey, Jr., <a href="http://dx.doi.org/10.1214/aoms/1177732978">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359.
%H J. L. Bailey, <a href="/A002309/a002309.pdf">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
%H Michael A. Bennett, <a href="http://dx.doi.org/10.4064/aa105-4-3">Lucas' square pyramid problem revisited</a>, Acta Arithmetica 105 (2002), 341-347.
%H Bruno Berselli, A description of the recursive method in Comments lines: website <a href="http://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian).
%H F. Beukers and J. Top, <a href="http://www.math.rug.nl/~top/oranges.pdf">On oranges and integral points on certain plane cubic curves</a>, Nieuw Arch. Wiskd., IV (1988), Ser. 6, No. 3, 203-210.
%H Henry Bottomley, <a href="/A000330/a000330.gif">Illustration of initial terms</a>.
%H S. Butler and P. Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq. 13 (2010), 10.4.4, p=1 in first displayed equation page 4.
%H Bikash Chakraborty, <a href="https://arxiv.org/abs/2012.11539">Proof Without Words: Sums of Powers of Natural numbers</a>, arXiv:2012.11539 [math.HO], 2020.
%H Robert Dawson, <a href="https://www.emis.de/journals/JIS/VOL21/Dawson/dawson6.html">On Some Sequences Related to Sums of Powers</a>, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
%H Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, <a href="http://arxiv.org/abs/1505.04479">Peaks Sets of Classical Coxeter Groups</a>, arXiv preprint arXiv:1505.04479 [math.GR], 2015.
%H Michael Dougherty, Christopher French, Benjamin Saderholm, and Wenyang Qian, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/French/french2.html">Hankel Transforms of Linear Combinations of Catalan Numbers</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.1.
%H David Galvin and Courtney Sharpe, <a href="https://arxiv.org/abs/2409.15555">Independent set sequence of linear hyperpaths</a>, arXiv:2409.15555 [math.CO], 2024. See p. 7.
%H Manfred Goebel, <a href="http://dx.doi.org/10.1007/s002000050118">Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials</a>, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
%H T. Aaron Gulliver, <a href="http://www.m-hikari.com/imf-2011/17-20-2011/index.html">Sequences from hexagonal pyramid of integers</a>, International Mathematical Forum, Vol. 6, 2011, no. 17, p. 821-827.
%H Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, <a href="https://doi.org/10.3934/era.2020057">Recursive sequences and Girard-Waring identities with applications in sequence transformation</a>, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
%H Milan Janjic, <a href="https://web.archive.org/web/20190226144349/https://pdfs.semanticscholar.org/801b/6b226bfe1d6b002fb4946c3957d7052132bd.pdf">Two Enumerative Functions</a>.
%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.
%H Milan Janjic and B. Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
%H R. Jovanovic, <a href="http://web.archive.org/web/20060214203801/http://milan.milanovic.org/math/Math.php?akcija=SviPiram">First 2500 Pyramidal numbers</a>.
%H R. P. Loh, A. G. Shannon, and A. F. Horadam, <a href="/A000969/a000969.pdf">Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients</a>, Preprint, 1980.
%H T. Mansour, <a href="https://arxiv.org/abs/math/0202219">Restricted permutations by patterns of type 2-1</a>, arXiv:math/0202219 [math.CO], 2002.
%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Merca1/merca6.html">A Special Case of the Generalized Girard-Waring Formula</a>, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
%H Cleve Moler, <a href="http://www.netlib.org/linpack/sgefa.f">LINPACK subroutine sgefa.f</a>, University of New Mexico, Argonne National Lab, 1978.
%H Michael Penn, <a href="https://www.youtube.com/watch?v=DIsW_6u7jrA">Counting on a chessboard.</a>, YouTube video, 2021.
%H C. J. Pita Ruiz V., <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Pita/pita19.html">Some Number Arrays Related to Pascal and Lucas Triangles</a>, J. Int. Seq. 16 (2013) #13.5.7.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/SEQUENCES/grid-squares">Square Counting</a>.
%H Think Twice, <a href="https://www.youtube.com/watch?v=aXbT37IlyZQ">Sum of n squares | explained visually |</a>, video (2017).
%H Herman Tulleken, <a href="https://www.researchgate.net/publication/333296614_Polyominoes">Polyominoes 2.2: How they fit together</a>, (2019).
%H G. N. Watson, <a href="http://archive.org/stream/messengerofmathe4849cambuoft#page/n9/mode/2up">The problem of the square pyramid</a>, Messenger of Mathematics 48 (1918), pp. 1-22.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FaulhabersFormula.html">Faulhaber's Formula</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquarePyramidalNumber.html">Square Pyramidal Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerSum.html">PowerSum</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Faulhaber's_formula">Faulhaber's formula</a>.
%H G. Xiao, Sigma Server, <a href="http://wims.unice.fr/~wims/en_tool~analysis~sigma.en.html">Operate on"n^2"</a>.
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>.
%H <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>.
%F G.f.: x*(1+x)/(1-x)^4.
%F E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
%F a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
%F 2*a(n) = A006331(n). - _N. J. A. Sloane_, Dec 11 1999
%F Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
%F a(n) = binomial(2*(n+1), 3)/4. - _Paul Barry_, Jul 19 2003
%F a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
%F From _Alexander Adamchuk_, Oct 26 2004: (Start)
%F a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^2).
%F a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
%F a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - _Jon Perry_, Dec 08 2004
%F a(n+1) = A000217(n+1) + 2*A000292(n). - _Creighton Dement_, Mar 10 2005
%F Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - _Philippe Deléham_, May 31 2005
%F Sum of two consecutive tetrahedral (or pyramidal) numbers A000292: C(n+3,3) = (n+1)*(n+2)*(n+3)/6: a(n) = A000292(n-1) + A000292(n). - _Alexander Adamchuk_, May 17 2006
%F Euler transform of length-2 sequence [ 5, -1 ]. - _Michael Somos_, Sep 04 2006
%F a(n) = a(n-1) + n^2. - _Rolf Pleisch_, Jul 22 2007
%F a(n) = A132121(n,0). - _Reinhard Zumkeller_, Aug 12 2007
%F a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by _M. F. Hasler_, Jan 02 2024
%F a(n) = A168559(n) + 1 for n > 0. - _Reinhard Zumkeller_, Feb 03 2012
%F a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - _Enrique Pérez Herrero_, Feb 26 2012
%F a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - _Mircea Merca_, Apr 03 2012
%F a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - _J. M. Bergot_, May 31 2012
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - _Ant King_, Oct 17 2012
%F a(n) = (A000292(n) + A002411(n))/2. - _Omar E. Pol_, Jan 11 2013
%F a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - _Enrique Pérez Herrero_, Jan 15 2013
%F a(n) = A000217(n) + A007290(n+1). - _Ivan N. Ianakiev_, May 10 2013
%F a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - _Richard R. Forberg_, Dec 25 2013
%F a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - _Bruno Berselli_, Feb 10 2014
%F a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - _Wesley Ivan Hurt_, Feb 25 2014
%F a(n) = A000578(n+1) - A002412(n+1). - _Wesley Ivan Hurt_, Jun 28 2014
%F a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - _Enrique Pérez Herrero_, Dec 03 2014
%F a(n) = (2*n^3 + 3*n^2 + n)/6, see Singh (2013). - _Alonso del Arte_, Feb 20 2015
%F For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - _Bui Quang Tuan_, Apr 03 2015
%F For n > 0: a(n) = A258708(n+3,n-1). - _Reinhard Zumkeller_, Jun 23 2015
%F a(n) = A175254(n) + A072481(n), n >= 1. - _Omar E. Pol_, Aug 12 2015
%F a(n) = A000332(n+3) - A000332(n+1). - _Antal Pinter_, Dec 27 2015
%F Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - _Ilya Gutkovskiy_, Jun 26 2016
%F a(n) = A080851(2,n-1). - _R. J. Mathar_, Jul 28 2016
%F a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - _Bruce J. Nicholson_, May 18 2017
%F 12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - _Bruno Berselli_, Jul 03 2017
%F a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - _Tony Foster III_, Aug 24 2018
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Nathan Fox_, Dec 04 2019
%F Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - _Charlie Marion_, Dec 31 2019
%F a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - _Boštjan Gec_, Nov 09 2023
%e G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
%p A000330 := n -> n*(n+1)*(2*n+1)/6;
%p a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # _Emeric Deutsch_
%p A000330 := (1+z)/(z-1)^4; # _Simon Plouffe_ (in his 1992 dissertation: generating function for sequence starting at a(1))
%p with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # _Zerinvary Lajos_, Jan 02 2008
%p a := n -> sum(k^2, k=1..n):seq(a(n), n=0...44); # _Zerinvary Lajos_, Jun 15 2008
%p nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # _Johannes W. Meijer_, Mar 07 2009
%t Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
%t CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* _Vincenzo Librandi_, Jul 30 2014 *)
%t Accumulate[Range[0,50]^2] (* _Harvey P. Dale_, Sep 25 2014 *)
%o (PARI) {a(n) = n * (n+1) * (2*n+1) / 6};
%o (PARI) upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ _Cino Hilliard_, Jun 18 2007, edited by _M. F. Hasler_, Jan 02 2024
%o (Haskell)
%o a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
%o a000330_list = scanl1 (+) a000290_list
%o -- _Reinhard Zumkeller_, Nov 11 2012, Feb 03 2012
%o (Maxima) A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
%o makelist(A000330(n),n,0,20); /* _Martin Ettl_, Nov 12 2012 */
%o (Magma) [n*(n+1)*(2*n+1)/6: n in [0..50]]; // _Wesley Ivan Hurt_, Jun 28 2014
%o (Magma) [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // _Vincenzo Librandi_, Jul 30 2014
%o (Python) a=lambda n: (n*(n+1)*(2*n+1))//6 # _Indranil Ghosh_, Jan 04 2017
%o (Sage) [n*(n+1)*(2*n+1)/6 for n in (0..30)] # _G. C. Greubel_, Dec 31 2019
%o (GAP) List([0..30], n-> n*(n+1)*(2*n+1)/6); # _G. C. Greubel_, Dec 31 2019
%Y Cf. A000217, A000292, A000537, A005408, A006003, A006331, A033994, A033999, A046092, A050409, A050446, A050447, A100157, A132124, A132112, A156921, A157702, A258708, A351830.
%Y Sums of 2 consecutive terms give A005900.
%Y Column 0 of triangle A094414.
%Y Column 1 of triangle A008955.
%Y Right side of triangle A082652.
%Y Row 2 of array A103438.
%Y Partial sums of A000290.
%Y Cf. similar sequences listed in A237616 and A254142.
%Y Cf. |A084930(n, 1)|.
%Y Cf. A253903 (characteristic function).
%Y Cf. A034705 (differences of any two terms).
%K nonn,easy,core,nice
%O 0,3
%A _N. J. A. Sloane_
%E Partially edited by _Joerg Arndt_, Mar 11 2010