Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3439 N1395 #20 Jun 27 2015 17:55:46
%S 1,4,12,30,70,159,339,706,1436,2853,5551,10622,19975,37043,67811,
%T 122561,219090,387578,678977,1178769,2029115,3465056,5872648,9882301,
%U 16517284,27430358,45275673,74297072,121245153,196810381,317850809,510830685,817139589,1301251186,2063204707,3257690903,5123047561
%N Number of partitions into non-integral powers.
%C a(n) is the number of solutions to the inequality sum_{i=1,2,..} x_i^(1/2)<=n for unknowns 1<=x_1<x_2<x_3<x_4<.... - _R. J. Mathar_, Jul 03 2009
%D B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H B. K. Agarwala, F. C. Auluck, <a href="http://dx.doi.org/10.1017/S0305004100026505">Statistical mechanics and partitions into non-integral powers of integers</a>, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
%H B. K. Agarwala and F. C. Auluck, <a href="/A000093/a000093.pdf">Statistical mechanics and partitions into non-integral powers of integers</a>, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
%e The 12 solutions for n=3 are 1^(1/2)<=3, 1^(1/2)+2^(1/2)<=3, 1^(1/2)+3^(1/2)<=3, 1^(1/2)+4^(1/2)<=3, 2^(1/2)<=3, 3^(1/2)<=3,...,8^(1/2)<=3 and 9^(1/2)<=3. - _R. J. Mathar_, Jul 03 2009
%K nonn
%O 1,2
%A _N. J. A. Sloane_
%E 3 more terms from _R. J. Mathar_, Jul 03 2009
%E More terms from _Sean A. Irvine_, Nov 11 2010