login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1).
(Formerly M3316 N1333)
11

%I M3316 N1333 #53 Apr 07 2021 02:49:57

%S 1,4,7,31,871,756031,571580604871,326704387862983487112031,

%T 106735757048926752040856495274871386126283608871,

%U 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068031

%N A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1).

%C An infinite coprime sequence defined by recursion. - _Michael Somos_, Mar 14 2004

%C This is the special case k=3 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - _Seppo Mustonen_, Sep 04 2005

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H John Cerkan, <a href="/A000289/b000289.txt">Table of n, a(n) for n = 0..12</a>

%H A. V. Aho and N. J. A. Sloane, <a href="https://www.fq.math.ca/Scanned/11-4/aho-a.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, <a href="http://neilsloane.com/doc/doubly.html">alternative link</a>.

%H S. W. Golomb, <a href="http://www.jstor.org/stable/2311857">On certain nonlinear recurring sequences</a>, Amer. Math. Monthly 70 (1963), 403-405.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012 - From N. J. A. Sloane, Jun 13 2012

%H S. Mustonen, <a href="http://www.survo.fi/papers/resseq.pdf">On integer sequences with mutual k-residues</a>

%H Seppo Mustonen, <a href="/A000215/a000215.pdf">On integer sequences with mutual k-residues</a> [Local copy]

%H <a href="/index/Aa#AHSL">Index entries for sequences of form a(n+1)=a(n)^2 + ...</a>

%F a(n) = A005267(n) + 2 (for n>0).

%F a(n) = ceiling(c^(2^n)) + 1 where c = A077141. - _Benoit Cloitre_, Nov 29 2002

%F For n>0, a(n) = 3 + Product_{i=0..n-1} a(i). - _Vladimir Shevelev_, Dec 08 2010

%t Join[{1}, RecurrenceTable[{a[n] == a[n-1]^2 - 3*a[n-1] + 3, a[1] == 4}, a, {n, 1, 9}]] (* _Jean-François Alcover_, Feb 06 2016 *)

%o (PARI) a(n)=if(n<2,max(0,1+3*n),a(n-1)^2-3*a(n-1)+3)

%Y Cf. A000058.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_