Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Jan 05 2023 03:54:38
%S 0,1,1,2,3,7,16,65,321,4546,107587,20773703,11595736272,
%T 431558332068481,134461531248108526465,186242594112190847520182173826,
%U 18079903385772308300945867582153787570051,34686303861638264961101080464895364211215702792496667048327
%N a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
%H T. D. Noe, <a href="/A000278/b000278.txt">Table of n, a(n) for n = 0..25</a>
%H W. Duke, Stephen J. Greenfield, and Eugene R. Speer, <a href="https://cs.uwaterloo.ca/journals/JIS/green2/qf.html">Properties of a Quadratic Fibonacci Recurrence</a>, J. Integer Seq. 1 (1998), Article #98.1.8.
%F a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - _Benoit Cloitre_, May 03 2003
%p A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end;
%t Join[{a=0,b=1},Table[c=a^2+b;a=b;b=c,{n,16}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 22 2011 *)
%t RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* _Robert G. Wilson v_, Apr 14 2017 *)
%o (PARI) a(n)=if(n<2,n>0,a(n-1)+a(n-2)^2)
%o (Sage)
%o def A000278():
%o x, y = 0, 1
%o while True:
%o yield x
%o x, y = x + y, x * x
%o a = A000278(); [next(a) for i in range(18)] # _Peter Luschny_, Dec 17 2015
%o (Magma) [n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // _Vincenzo Librandi_, Dec 17 2015
%Y Cf. A000283, A058182.
%K nonn
%O 0,4
%A Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
%E Name edited by _Petros Hadjicostas_, Nov 03 2019