Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3032 N1229 #119 Jul 05 2024 16:13:01
%S 1,1,3,16,218,9608,1540944,882033440,1793359192848,13027956824399552,
%T 341260431952972580352,32522909385055886111197440,
%U 11366745430825400574433894004224,14669085692712929869037096075316220928,70315656615234999521385506555979904091217920
%N Number of unlabeled simple digraphs with n nodes.
%D CRC Handbook of Combinatorial Designs, 1996, p. 651.
%D J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 522.
%D F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 225.
%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 124, Table 5.1.2 and p. 241, Table A4.
%D M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Keith Briggs, <a href="/A000273/b000273.txt">Table of n, a(n) for n = 0..64</a>
%H R. Absil and H Mélot, <a href="http://arxiv.org/abs/1304.7993">Digenes: genetic algorithms to discover conjectures about directed and undirected graphs</a>, arXiv preprint arXiv:1304.7993 [cs.DM], 2013.
%H Fatemeh Arbabjolfaei and Young-Han Kim, <a href="http://dx.doi.org/10.1561/0100000094">Fundamentals of Index Coding</a>, Foundations and Trends in Communications and Information Theory (2018) Vol. 14, Issue 3-4.
%H P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H R. L. Davis, <a href="http://dx.doi.org/10.1090/S0002-9939-1953-0055294-2">The number of structures of finite relations</a>, Proc. Amer. Math. Soc. 4 (1953), 486-495.
%H A. Iványi, <a href="http://www.emis.de/journals/AUSM/C5-1/math51-5.pdf">Leader election in synchronous networks</a>, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
%H Gábor Kusper, Zijian Győző Yang, and Benedek Nagy, <a href="https://doi.org/10.33039/ami.2023.08.011">Using extended resolution to represent strongly connected components of directed graphs</a>, Ann. Math. Inf. (2023).
%H M. D. McIlroy, <a href="/A000088/a000088.pdf">Calculation of numbers of structures of relations on finite sets</a>, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
%H W. Oberschelp, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002298732">Kombinatorische Anzahlbestimmungen in Relationen</a>, Math. Ann., 174 (1967), 53-78.
%H G. Pfeiffer, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Pfeiffer/pfeiffer6.html">Counting Transitive Relations</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
%H J. Qian, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p46">Enumeration of unlabeled directed hypergraphs</a>, Electronic Journal of Combinatorics, 20(1) (2013), #P46. - From _N. J. A. Sloane_, Mar 01 2013
%H J. M. Tangen and N. J. A. Sloane, <a href="/A000666/a000666.pdf">Correspondence, 1976-1976</a>
%H L. Travis, <a href="https://arxiv.org/abs/math/9811127">Graphical Enumeration: A Species-Theoretic Approach</a>, arXiv:math/9811127 [math.CO], 1998.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleDirectedGraph.html">Simple Directed Graph</a>
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F a(n) ~ 2^(n*(n-1))/n! [McIlroy, 1955]. - _Vaclav Kotesovec_, Dec 19 2016
%p with(combinat):with(numtheory):
%p for n from 0 to 20 do p:=partition(n):
%p s:=0:for k from 1 to nops(p) do
%p q:=convert(p[k],multiset):
%p for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od:
%p c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od:
%p g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to d do if del<=n and d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od:
%p s:=s+2^(g/ord)/c:
%p od:
%p print(n,s):
%p od:
%p # _Vladeta Jovovic_, Jun 06 2006
%p # second Maple program:
%p b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
%p igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
%p add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
%p end:
%p A000273 := n-> b(n$2, []):
%p seq(A000273(n), n=0..20); # _Alois P. Heinz_, Sep 04 2019
%t Table[CycleIndex[PairGroup[SymmetricGroup[n],Ordered],t]/.Table[t[i]->1+x^i,{i,1,n^2}]/.{x->1},{n,1,7}] (* or *)
%t Table[GraphPolynomial[n,t,Directed]/.{t->1},{n,1,20}]
%t (* _Geoffrey Critzer_, Mar 08 2011 *)
%t permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
%t edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total[v-1];
%t a[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jul 08 2018, after _Andrew Howroyd_ *)
%o (PARI)
%o permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
%o a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ _Andrew Howroyd_, Oct 22 2017
%o (Python)
%o from math import gcd, factorial
%o from sympy.utilities.iterables import partitions
%o def permcount(v):
%o m, s, k = 1, 0, 0
%o for i, t in enumerate(v):
%o k = k+1 if i > 0 and t == v[i-1] else 1; m *= t*k; s += t
%o return factorial(s)//m
%o def edges(v): return sum(sum(2*gcd(v[i], v[j]) for j in range(i)) for i in range(1, len(v))) + sum(vi-1 for vi in v)
%o def a(n):
%o s = 0
%o for p in partitions(n):
%o pvec = []
%o for i in sorted(p): pvec.extend([i]*p[i])
%o s += permcount(pvec)*2**edges(pvec)
%o return s//factorial(n)
%o print([a(n) for n in range(15)]) # _Michael S. Branicky_, Nov 14 2022 after _Andrew Howroyd_
%o (Python)
%o from itertools import combinations
%o from math import prod, factorial, gcd
%o from fractions import Fraction
%o from sympy.utilities.iterables import partitions
%o def A000273(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r,s)<<1 for r,s in combinations(p.keys(),2))+sum(r*(q*r-1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # _Chai Wah Wu_, Jul 05 2024
%Y Row sums of A052283 and of A217654.
%K nonn,core,nice
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Vladeta Jovovic_, Dec 14 1999