Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #97 Nov 24 2024 01:49:31
%S 1,2,3,3,4,4,5,5,5,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9,10,10,10,10,10,11,
%T 11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,13,14,14,14,14,14,
%U 14,14,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17
%N Integer part of square root of 4n+1.
%C 1^1, 2^1, 3^2, 4^2, 5^3, 6^3, 7^4, 8^4, 9^5, 10^5, ...
%C Start with n, repeatedly subtract the square root of the previous term; a(n) gives number of steps to reach 0. - _Robert G. Wilson v_, Jul 22 2002
%C Triangle A094727 read by diagonals. - _Philippe Deléham_, Mar 21 2014
%C Partial sums of A240025; a(n) = number of quarter squares <= n. - _Reinhard Zumkeller_, Jul 05 2014
%C Every number k is present consecutively (floor((2*k+3)/4)) times. - _Bernard Schott_, Jun 08 2019
%D Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 20.
%D Bruce C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, 1994, see p. 77, Entry 23.
%H T. D. Noe, <a href="/A000267/b000267.txt">Table of n, a(n) for n = 0..10000</a>
%H Gal Cohensius, Urban Larsson, Reshef Meir, and David Wahlstedt, <a href="https://arxiv.org/abs/1805.09368">Cumulative subtraction games</a>, arXiv:1805.09368 [math.CO], 2018-2020.
%H S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/question/q723.htm">Question 723</a>, J. Ind. Math. Soc., Vol. 7 (1915), p. 240, Vol. 10 (1918), pp. 357-358.
%F floor(a(n)/2) = A000196(n).
%F a(n) = 1 + a(n - floor(n^(1/2))), if n>0. - _Michael Somos_, Jul 22 2002
%F a(n) = floor( 1 / ( sqrt(n + 1) - sqrt(n) ) ). - Robert A. Stump (bob_ess107(AT)yahoo.com), Apr 07 2003
%F a(n) = |{floor(n/k): k in Z+}|. - _David W. Wilson_, May 26 2005
%F a(n) = ceiling(2*sqrt(n+1) - 1). - _Mircea Merca_, Feb 03 2012
%F a(n) = A000196(A016813(n)). - _Reinhard Zumkeller_, Dec 13 2012
%F a(n) = A070939(A227368(n+1)), conjectured. - _Antti Karttunen_, Dec 28 2013
%F a(n) = floor( sqrt(n) + sqrt(n+2) ). [_Bruno Berselli_, Jan 08 2015]
%F a(n) = floor( sqrt(4*n + k) ) where k = 1, 2, or 3. - _Michael Somos_, Mar 11 2015
%F G.f.: (Sum_{k>0} x^floor(k^2 / 4)) / (1 - x). - _Michael Somos_, Mar 11 2015
%F a(n) = 1 + A055086(n). - _Michael Somos_, Sep 02 2017
%F a(n) = floor(sqrt(n+1)+1/2) + floor(sqrt(n)). - _Ridouane Oudra_, Jun 07 2019
%F Sum_{k>=0} (-1)^k/a(k) = Pi/8 + log(2)/4. - _Amiram Eldar_, Jan 26 2024
%e From _Philippe Deléham_, Mar 21 2014: (Start)
%e Triangle A094727 begins:
%e 1;
%e 2, 3;
%e 3, 4, 5;
%e 4, 5, 6, 7;
%e 5, 6, 7, 8, 9;
%e 6, 7, 8, 9, 10, 11; ...
%e Read by diagonals:
%e 1;
%e 2;
%e 3, 3;
%e 4, 4;
%e 5, 5, 5;
%e 6, 6, 6;
%e 7, 7, 7, 7;
%e 8, 8, 8, 8;
%e 9, 9, 9, 9, 9;
%e 10, 10, 10, 10, 10; (End)
%e G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 5*x^7 + 5*x^8 + 6*x^9 + ...
%p A000267:=seq(floor(sqrt(4*n+1)), n=0..100); // _Bernard Schott_, Jun 08 2019
%t Table[Floor[Sqrt[4*n + 1]], {n, 0, 100}] (* _T. D. Noe_, Jun 19 2012 *)
%o (PARI) {a(n) = if( n<0, 0, sqrtint(4*n + 1))};
%o (Haskell)
%o a000267 = a000196 . a016813 -- _Reinhard Zumkeller_, Dec 13 2012
%o (Magma) [Floor(Sqrt(4*n+1)): n in [0..100]]; // _Vincenzo Librandi_, Jun 08 2019
%o (Python)
%o from math import isqrt
%o def A000267(n): return isqrt((n<<2)|1) # _Chai Wah Wu_, Nov 23 2024
%Y Cf. A055086, A080037, A227368.
%Y Cf. A000196, A002620, A016813, A070939, A094727, A240025.
%K nonn,easy,nice,tabf
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _Michael Somos_, Jun 13 2000